Content of Methods for Protecting Water and Soil Resources in our journal
    Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: Toggle Thumbnails
Response of seed persistence of resource plants to shallow groundwater hydrological conditions in the Yellow River Delta
FENG Lu, LI Lijie, XUE Qi, SUN Yu, WANG Qi, JIA Hui, SUN Lin
Shandong Science    2025, 38 (2): 62-72.   DOI: 10.3976/j.issn.1002-4026.20240132
Abstract29)   HTML1)    PDF(pc) (5927KB)(1)       Save

Sea level rise and anthropogenic activities significantly affect the hydrological conditions of shallow groundwater in coastal wetlands. It is unclear how seed persistence responds to changes in the hydrological conditions of shallow groundwater. Seeds from four wild-resource plant species, Phragmites australis, Suaeda salsa, Chenopodium glaucum, and Cynanchum chinense, from coastal areas of the Yellow River Delta were selected for the study. Using indoor simulation methods, we investigated differences in seed persistence at two shallow groundwater levels (moist and saturated habitats), four gradients of shallow groundwater salinity, and under dry conditions based on mean germination time, germinability index, and viability index. Overall, mean germination time, seed germinability index, and viability index were consistent in evaluating seed persistence. The response trends of seed persistence of different plants to shallow groundwater level and salinity were different. Seed persistence was stronger in dry and saturated habitats than in moist habitats. Compared with storage in moist habitats, the seed persistence of P. australis, S. salsa, and C. glaucum was significantly stronger in saturated habitats (P<0.05). The effects of shallow groundwater salinity on seed persistence varied with changes in shallow groundwater level. In moist habitats, based on germinability index and viability index, seed persistence of S. salsa, C. glaucum, and C. chinense increased with the increase in shallow groundwater salinity. However, these trends did not exist when the seeds were in saturated habitats. The results will provide a scientific basis for the protection of resources in the degraded wetlands of the Yellow River Delta.

Table and Figures | Reference | Related Articles | Metrics
Effects of carbon-to-nitrogen ratio on the proliferation of typical salt-tolerant microorganisms
WANG Chen, LU Yaxin, LI Xiaoyong, ZHANG Jiayi, XU Letian, FENG Qing
Shandong Science    2025, 38 (2): 73-79.   DOI: 10.3976/j.issn.1002-4026.20240128
Abstract25)   HTML1)    PDF(pc) (1515KB)(6)       Save

Bacillus velezensis, Bacillus thuringiensis and Brevibacterium frigoritolerans are three typical salt-tolerant plant growth-promoting rhizobacteria (ST-PGPR) known for their ability to alleviate salt stress in plants. To optimize the nutritional conditions for the growth and proliferation of these strains, experiment of single factor method was used to investigate the effects of different carbon-to-nitrogen ratios (nC/nN) on their development. The results showed that all three strains could grow and reproduce in a medium with a nC/nN of 3.25~6.00. However, the nC/nN had varying effects on their proliferation, i.e., the most significant impact was observed on the proliferation of velezensis, followed by thuringiensis and frigoritolerans. When the nC/nN was 4:1, velezensis exhibited the highest proliferation, with a viable bacterial count of 6.2 × 108 CFU/mL. Similarly, thuringiensis achieved its highest proliferation at a nC/nN of 4:1, with a viable bacterial count of 5.1 × 108 CFU/mL. Conversely, frigoritolerans achieved its highest proliferation at a nC/nN of 5:1, with a viable bacterial count of 3.5 × 108 CFU/mL. In conclusion, the optimal nC/nN for the proliferation of velezensis and thuringiensis is 4:1, whereas that for frigoritolerans is 5:1.

Table and Figures | Reference | Related Articles | Metrics
Construction of TiO2/coal gasification slag composites via the ball milling method and their photocatalytic properties
SUN Jing, HAN Jintai, SHEN Tingting, WANG Chen, FENG Qing, LIU Ruobing
Shandong Science    2025, 38 (2): 80-88.   DOI: 10.3976/j.issn.1002-4026.2025018
Abstract22)   HTML1)    PDF(pc) (3511KB)(1)       Save

Coal gasification slag is a solid waste generated during coal chemical production and accounts for a notable proportion of solid wastes. Leveraging the natural properties (e.g., high specific surface area and pore volume) and compositional characteristics (rich in carbon) of coal gasification slag, this study used the mechanical ball milling method to composite coal gasification slag using a conventional photocatalyst titanium dioxide (TiO2) for broadening the photocatalytic response range of TiO2. Dye wastewater was used as the treatment object to evaluate the photocatalytic performance of the resulting composite material. Characterization techniques such as X-ray diffraction, Fourier Transform infrared spectroscopy, and scanning electron microscopy were used to investigate the optimal process conditions for the catalytic degradation of a methylene blue (MB) solution by the TiO2/coal gasification slag composite material. Results show that under visible-light conditions, the degradation efficiency of the developed composite material (TiO2∶slag ratio of 90∶10) is higher than those of anatase TiO2, P25, and the coal gasification slag/P25 composite material. Infrared characterization and free-radical quenching experiments indicated that coal gasification slag and TiO2 effectively bonded through Ti—O—Si bonds, expanding the photocatalytic response range of TiO2 and increasing the photocatalytic reaction contact area. In addition, hydroxyl radicals were identified as the primary active substances responsible for degrading MB. Compared with anatase TiO2, the catalytic efficiency of the composite material increased by 4.96 times. Furthermore, its catalytic degradation efficiency remained above 90% after three cycles, indicating that the TiO2/coal gasification slag composite material has excellent degradation efficiency and stability.

Table and Figures | Reference | Related Articles | Metrics