Shandong Science ›› 2022, Vol. 35 ›› Issue (5): 26-36.doi: 10.3976/j.issn.1002-4026.2022.05.004
• Pharmacology and Toxicology • Previous Articles Next Articles
LIU Xue-ting1a(
), SUN Xiao-hui2, ZHU Jian-min2,*(
), LI Lin1b, LI Wen-yue1b
Received:2021-11-02
Published:2022-10-20
Online:2022-10-10
Contact:
ZHU Jian-min
E-mail:liuxueting1112021@126.com;jinjin20021023@126.com
CLC Number:
LIU Xue-ting, SUN Xiao-hui, ZHU Jian-min, LI Lin, LI Wen-yue. Mechanism of the anti-breast cancer effect of Sparganii Rhizoma-Curcumae Rhizoma herbal pair based on network pharmacology and molecular docking[J].Shandong Science, 2022, 35(5): 26-36.
Table 1
The main biological processes involved in the treatment of breast cancer using Sparganii Rhizoma-Curcumae Rhizoma(Top 10)"
| 序号 | 生物过程 | 基因数 | P值 |
|---|---|---|---|
| 1 | 对雌二醇的反应 | 8 | 2.51×10-9 |
| 2 | 缺乏配体的外源性凋亡信号通路 | 6 | 2.02×10-9 |
| 3 | 对药物的反应 | 10 | 4.89×10-8 |
| 4 | RNA聚合酶Ⅱ启动子转录的正调控 | 14 | 4.45×10-7 |
| 5 | RNA聚合酶Ⅱ启动子起始转录 | 7 | 1.99×10-6 |
| 6 | 类固醇激素介导的信号通路 | 5 | 1.21×10-5 |
| 7 | 血管生成 | 7 | 1.80×10-5 |
| 8 | 转录DNA模板正调控 | 9 | 3.45×10-5 |
| 9 | 对脂多糖的反应 | 6 | 5.31×10-5 |
| 10 | 缺氧反应 | 6 | 6.65×10-5 |
Table 2
The main molecular functions involved in the treatment of breast cancer using Sparganii Rhizoma-Curcumae Rhizoma(Top 10)"
| 序号 | 分子功能 | 基因数 | P值 |
|---|---|---|---|
| 1 | 酶结合 | 14 | 8.27×10-13 |
| 2 | 类固醇激素受体 | 7 | 4.84×10-9 |
| 3 | 类固醇结合 | 5 | 5.57×10-7 |
| 4 | RNA聚合酶II转录因子活性,配体激活序列 特异性DNA结合 | 5 | 1.84×10-6 |
| 5 | 序列特异性DNA结合 | 9 | 3.50×10-5 |
| 6 | 蛋白质同源二聚活性 | 10 | 6.21×10-5 |
| 7 | 转录因子结合 | 7 | 6.78×10-5 |
| 8 | 核心启动子序列特异性DNA结合 | 4 | 1.65×10-4 |
| 9 | 蛋白质结合 | 34 | 3.54×10-4 |
| 10 | 半胱氨酸型内肽酶活性参与细胞凋亡过程 | 3 | 4.63×10-4 |
Table 3
The main cellular components involved in the treatment of breast cancer using Sparganii Rhizoma-Curcumae Rhizoma(Top 10)"
| 序号 | 细胞组分 | 基因数 | P值 |
|---|---|---|---|
| 1 | 膜筏 | 6 | 1.06×10-4 |
| 2 | 细胞质 | 19 | 1.83×10-4 |
| 3 | 核 | 25 | 1.93×10-4 |
| 4 | 传递神经元 | 6 | 2.05×10-4 |
| 序号 | 细胞组分 | 基因数 | P值 |
| 5 | 核质 | 17 | 2.63×10-4 |
| 6 | 线粒体外膜 | 5 | 3.77×10-4 |
| 7 | 胞膜微囊 | 4 | 4.50×10-4 |
| 8 | 核染色质 | 5 | 9.96×10-4 |
| 9 | 线粒体 | 10 | 2.84×10-3 |
| 10 | 内质网 | 7 | 1.12×10-2 |
Table 4
Molecular docking results of the effective active ingredients and core targets"
| PDB编号 | 核心靶点 | 有效活性成分 | 结合自由能/(kJ·mol-1) |
|---|---|---|---|
| 6OSN | JUN | 常春藤皂苷元 | -5.3 |
| 反式软骨酸 | -5.2 | ||
| β-谷甾醇 | -6.2 | ||
| PDB编号 | 核心靶点 | 有效活性成分 | 结合自由能/(kJ·mol-1) |
| 芒柄花黄素 | -5.4 | ||
| 豆甾醇 | -6.3 | ||
| 2DKO | CASP3 | 常春藤皂苷元 | -8.1 |
| 反式软骨酸 | -5.1 | ||
| β-谷甾醇 | -7.7 | ||
| 芒柄花黄素 | -6.5 | ||
| 豆甾醇 | -8.2 | ||
| 3NT1 | PTGS2 | 常春藤皂苷元 | -9.2 |
| 反式软骨酸 | -5.9 | ||
| β-谷甾醇 | -9.1 | ||
| 芒柄花黄素 | -9.3 | ||
| 豆甾醇 | -8.7 |
| [1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
doi: 10.3322/caac.21660 pmid: 33538338 |
| [2] |
TRAN S, HICKEY M, SAUNDERS C, et al. Nonpharmacological therapies for the management of menopausal vasomotor symptoms in breast cancer survivors[J]. Supportive Care in Cancer, 2021, 29(3): 1183-1193. DOI: 10.1007/s00520-020-05754-w.
doi: 10.1007/s00520-020-05754-w |
| [3] |
卢泰成, 许博文, 李杰. 王清任活血化瘀法在肿瘤治疗中的应用[J]. 世界中医药, 2021, 16(10): 1616-1619. DOI: 10.3969/j.issn.1673-7202.2021.10.023.
doi: 10.3969/j.issn.1673-7202.2021.10.023 |
| [4] |
陈桂芬. 血瘀证乳腺癌与分子分型及预后关系的相关性研究[J]. 中国现代医药杂志, 2019, 21(7): 5-8. DOI: 10.3969/j.issn.1672-9463.2019.07.002.
doi: 10.3969/j.issn.1672-9463.2019.07.002 |
| [5] |
寇露露, 刘海霞, 邵妤, 等. 三棱、莪术抗肿瘤生物活性研究[J]. 吉林中医药, 2017, 37(7): 722-724. DOI: 10.13463/j.cnki.jlzyy.2017.07.021.
doi: 10.13463/j.cnki.jlzyy.2017.07.021 |
| [6] |
陈晓军, 韦洁, 苏华, 等. 莪术药理作用的研究新进展[J]. 药学研究, 2018, 37(11): 664-668. DOI: 10.13506/j.cnki.jpr.2018.11.011.
doi: 10.13506/j.cnki.jpr.2018.11.011 |
| [7] |
李林, 陆兔林, 卞慧敏, 等. 莪术活血化瘀有效物质研究[J]. 上海中医药大学学报, 2004, 18(3): 40-42. DOI: 10.16306/j.1008-861x.2004.03.014.
doi: 10.16306/j.1008-861x.2004.03.014 |
| [8] |
尹定聪, 杨华升. 莪术油抗肿瘤作用的研究进展[J]. 中医药导报, 2018, 24(3): 62-63. DOI: 10.13862/j.cnki.cn43-1446/r.2018.03.020.
doi: 10.13862/j.cnki.cn43-1446/r.2018.03.020 |
| [9] |
袁甜, 崔琳琳, 王莹, 等. 中药网络药理学最新进展[J]. 中医药学报, 2021, 49(1): 101-106. DOI: 10.19664/j.cnki.1002-2392.210023.
doi: 10.19664/j.cnki.1002-2392.210023 |
| [10] |
HSIN K Y, GHOSH S, KITANO H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology[J]. PLoS One, 2013, 8(12): e83922. DOI: 10.1371/journal.pone.0083922.
doi: 10.1371/journal.pone.0083922 |
| [11] |
CHENG L, SHI L, WU J, et al. A hederagenin saponin isolated from Clematis ganpiniana induces apoptosis in breast cancer cells via the mitochondrial pathway[J]. Oncology Letters, 2018, 15(2):1797-1743. DOI: 10.3892/ol.2017.7494.
doi: 10.3892/ol.2017.7494 |
| [12] |
RAMALINGAM S, PACKIRISAMY M, KARUPPIAH M, et al. Effect of β-sitosterol on glucose homeostasis by sensitization of insulin resistance via enhanced protein expression of PPRγ and glucose transporter 4 in high fat diet and streptozotocin-induced diabetic rats[J]. Cytotechnology, 2020, 72(3): 357-366. DOI: 10.1007/s10616-020-00382-y.
doi: 10.1007/s10616-020-00382-y pmid: 32124158 |
| [13] |
GAUTAM M, THAPA R K, GUPTA B, et al. Phytosterol-loaded CD44 receptor-targeted PEGylated nano-hybridPhyto-liposomes for synergistic chemotherapy[J]. Expert Opinion on Drug Delivery, 2020, 17(3): 423-434. DOI: 10.1080/17425247.2020.1727442.
doi: 10.1080/17425247.2020.1727442 |
| [14] |
WU X Y, XU H, WU Z F, et al. Formononetin, a novel FGFR2 inhibitor, potently inhibits angiogenesis and tumor growth in preclinical models[J]. Oncotarget, 2015, 6(42): 44563-44578. DOI: 10.18632/oncotarget.6310.
doi: 10.18632/oncotarget.6310 pmid: 26575424 |
| [15] |
贾绍华, 刘丽娜, 颜廷华. 芒柄花素诱导人乳腺癌MCF-7细胞凋亡及其氧化应激的机制[J]. 华西药学杂志, 2020, 35(4): 385-391. DOI: 10.13375/j.cnki.wcjps.2020.04.009.
doi: 10.13375/j.cnki.wcjps.2020.04.009 |
| [16] |
WU Q H, WU W D, FU B S, et al. JNK signaling in cancer cell survival[J]. Medicinal Research Reviews, 2019, 39(6): 2082-2104. DOI: 10.1002/med.21574.
doi: 10.1002/med.21574 pmid: 30912203 |
| [17] |
YADAV P, YADAV R, JAIN S, et al. Caspase-3: A primary target for natural and synthetic compounds for cancer therapy[J]. Chemical Biology & Drug Design, 2021, 98(1): 144-165. DOI: 10.1111/cbdd.13860.
doi: 10.1111/cbdd.13860 |
| [18] |
PENG Y L, WANG Y, TANG N, et al. Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathway[J]. Journal of Experimental & Clinical Cancer Research, 2018, 37(1): 1-14. DOI: 10.1186/s13046-018-0926-9.
doi: 10.1186/s13046-018-0926-9 |
| [19] |
YANG W, HE X, HE C J, et al. Impact of ESR1 polymorphisms on risk of breast cancer in the Chinese Han population[J]. Clinical Breast Cancer, 2021, 21(3): e235-e242. DOI: 10.1016/j.clbc.2020.10.003.
doi: 10.1016/j.clbc.2020.10.003 pmid: 33281037 |
| [20] |
GAO S, DING B S, LOU W Y. microRNA-dependent modulation of genes contributes to ESR1's effect on ERα positive breast cancer[J]. Frontiers in Oncology, 2020, 10: 753. DOI: 10.3389/fonc.2020.00753.
doi: 10.3389/fonc.2020.00753 pmid: 32500028 |
| [21] |
GU G W, TIAN L, HERZOG S K, et al. Hormonal modulationof ESR1 mutant metastasis[J]. Oncogene, 2021, 40(5): 997-1011. DOI: 10.1038/s41388-020-01563-x.
doi: 10.1038/s41388-020-01563-x |
| [22] |
DASHTI S, TAHERIAN-ESFAHANI Z, KHOLGHI-OSKOOEI V, et al. In silico identification of MAPK14-related lncRNAs and assessment of their expression in breast cancer samples[J]. Scientific Reports, 2020, 10(1): 1-12. DOI: 10.1038/s41598-020-65421-2.
doi: 10.1038/s41598-020-65421-2 |
| [23] |
WANG L P, SHI H M, LIU Y, et al. Cystathionine-γ-lyase promotes the metastasis of breast cancer via the VEGF signaling pathway[J]. International Journal of Oncology, 2019, 55(2): 473-487. DOI: 10.3892/ijo.2019.4823.
doi: 10.3892/ijo.2019.4823 |
| [24] |
SIA D, ALSINET C, NEWELL P, et al. VEGF signaling in cancer treatment[J]. Current Pharmaceutical Design, 2014, 20(17): 2834-2842. DOI: 10.2174/13816128113199990590.
doi: 10.2174/13816128113199990590 pmid: 23944367 |
| [25] |
WALDNER M J, NEURATH M F. Targeting the VEGF signaling pathway in cancer therapy[J]. Expert Opinion on Therapeutic Targets, 2012, 16(1): 5-13. DOI: 10.1517/14728222.2011.641951.
doi: 10.1517/14728222.2011.641951 pmid: 22239434 |
| [26] |
MARTÍNEZ-REZA I, DÍAZ L, GARCÍA-BECERRA R. Preclinical and clinical aspects of TNF-α and its receptors TNFR1 and TNFR2 in breast cancer[J]. Journal of Biomedical Science, 2017, 24(1): 1-8. DOI: 10.1186/s12929-017-0398-9.
doi: 10.1186/s12929-017-0398-9 |
| [27] |
LIU W J, LU X Q, SHI P G, et al. TNF-α increases breast cancer stem-like cells through up-regulating TAZ expression via the non-canonical NF-κB pathway[J]. Scientific Reports, 2020, 10(1): 1-11. DOI: 10.1038/s41598-020-58642-y.
doi: 10.1038/s41598-020-58642-y |
| [28] |
欧宏宇, 朱海宏, 朱文君, 等. 抗菌肽LL-37通过激活p53信号通路诱导胃癌AGS细胞凋亡[J]. 安徽医科大学学报, 2021, 56(4): 571-576. DOI: 10.19405/j.cnki.issn1000-1492.2021.04.013.
doi: 10.19405/j.cnki.issn1000-1492.2021.04.013 |
| [29] |
罗浩泉, 林忠顺, 黄小林. 乳腺良恶性肿瘤患者血清催乳素水平变化研究[J]. 中国医学创新, 2018, 15(12): 123-125. DOI: 10.3969/j.issn.1674-4985.2018.12.035.
doi: 10.3969/j.issn.1674-4985.2018.12.035 |
| [30] |
BORCHERDING D C, HUGO E R, FOX S R, et al. Suppression of breast cancer by small molecules that block the prolactin receptor[J]. Cancers, 2021, 13(11): 2662. DOI: 10.3390/cancers13112662.
doi: 10.3390/cancers13112662 |
|
||
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits third parties to freely share (i.e., copy and redistribute the material in any medium or format) and adapt (i.e., remix, transform, or build upon the material) the articles published in this journal, provided that appropriate credit is given, a link to the license is provided, and any changes made are indicated. The material may not be used for commercial purposes. For details of the CC BY-NC 4.0 license, please visit: https://creativecommons.org/licenses/by-nc/4.0