Shandong Science ›› 2024, Vol. 37 ›› Issue (3): 27-38.doi: 10.3976/j.issn.1002-4026.20230120
• Pharmacology and Toxicology • Previous Articles Next Articles
MA Shijing(), HE Chunyan*(
), GUAN Tianzhu, YAO Xueshuang, ZHANG Junpeng
Received:
2023-08-07
Online:
2024-06-20
Published:
2024-06-14
CLC Number:
MA Shijing, HE Chunyan, GUAN Tianzhu, YAO Xueshuang, ZHANG Junpeng. Exploration of antihyperlipidemia mechanism of Monopterus albus peptides based on hyperlipidemic zebrafish model and network pharmacology[J].Shandong Science, 2024, 37(3): 27-38.
Table 2
Effect of Monopterus albus peptideson triglyceride content in hyperlipidemic zebrafish(n=10)"
实验组 | 质量浓度/(μg·mL-1) | 尾部血管染色强度/像素 | 甘油三酯抑制率/% |
---|---|---|---|
正常对照组 | 未添加 | 459±39*** | |
模型对照组 | 未添加 | 13 464±814 | |
阿伐他汀钙组 | 11.6 | 4 050±294*** | 69.9 |
黄鳝肽低剂量组 | 31.2 | 11 732±399 | 12.9 |
黄鳝肽中剂量组 | 62.5 | 6 915±234*** | 48.6 |
黄鳝肽高剂量组 | 125.0 | 7 351±374*** | 45.4 |
Table 3
Effect of Monopterus albus peptides on cholesterol content in hyperlipidemic zebrafish(n=10)"
实验组 | 质量浓度/(μg·mL-1) | 尾部血管胆固醇荧光强度/像素 | 胆固醇抑制率/% |
---|---|---|---|
正常对照组 | 未添加 | 15 640±946*** | |
模型对照组 | 未添加 | 47 552±3 555 | |
阿伐他汀钙组 | 11.6 | 33 087±2 906** | 30.4 |
黄鳝肽低剂量组 | 31.2 | 35 188±2 935 | 26.0 |
黄鳝肽中剂量组 | 62.5 | 29 848±2 422** | 37.2 |
黄鳝肽高剂量组 | 125.0 | 28 914±2 370** | 39.2 |
Table 4
Potentially active peptide sequences in Monopterus albus peptides"
肽段序列 | 肽活性评分 | 血脑屏障通透性 | 分子疏水常数 | 生物利用度评分 |
---|---|---|---|---|
PGPLGPYFL | 0.96 | NO | -1.39 | 0.17 |
PGPM | 0.95 | NO | -0.77 | 0.55 |
FSAPGGGF | 0.95 | — | -2.91 | 0.17 |
PGPGMP | 0.94 | — | -1.60 | 0.17 |
PGPLGPM | 0.93 | — | -1.55 | 0.17 |
PGPGPM | 0.93 | — | -1.60 | 0.17 |
GPPVPGPLGP | 0.93 | — | -2.75 | 0.17 |
PDPGPGPM | 0.93 | — | -2.83 | 0.11 |
LPGPGACGKF | 0.92 | — | -3.51 | 0.17 |
PGPLGPL | 0.92 | — | -1.36 | 0.17 |
PDPGPGMP | 0.92 | — | -2.83 | 0.11 |
PGLPGPM | 0.91 | — | -1.55 | 0.17 |
PGPLGMP | 0.91 | — | -1.55 | 0.17 |
PGLPGACGKF | 0.91 | — | -3.51 | 0.17 |
GPPSGGFK | 0.90 | — | -3.60 | 0.17 |
PVPGLPGPM | 0.90 | — | -2.00 | 0.17 |
SSGPPVPGPL | 0.88 | — | -4.34 | 0.17 |
PGPLGPMT | 0.88 | — | -2.66 | 0.17 |
PGLPCGAGKF | 0.87 | — | -3.51 | 0.17 |
AGGPLGPR | 0.86 | — | -3.51 | 0.17 |
PVPGPM | 0.85 | — | -0.98 | 0.17 |
VPGLPGPM | 0.85 | — | -1.76 | 0.17 |
VPPGPM | 0.85 | — | -0.98 | 0.17 |
GPAPP | 0.85 | — | -1.29 | 0.55 |
GPGR | 0.84 | — | -2.42 | 0.17 |
WDPGPQ | 0.84 | — | -2.72 | 0.11 |
GPAGSFGPVGK | 0.84 | — | -5.12 | 0.17 |
PGGGFDL | 0.84 | — | -2.50 | 0.11 |
PGLPGP | 0.84 | — | -1.39 | 0.17 |
GPAGPHGPVG | 0.83 | — | -4.80 | 0.17 |
PAGPL | 0.82 | — | -1.06 | 0.55 |
SGPPAP | 0.82 | — | -2.55 | 0.17 |
GPAGGPAGSF | 0.81 | — | -4.71 | 0.17 |
GPVGPM | 0.81 | — | -1.60 | 0.17 |
GPAGPR | 0.80 | — | -2.88 | 0.17 |
Table 5
Core target topology analysis"
核心靶点名称 | 中间度值 | 接近度值 | 节点度值 | 核心靶点名称 | 中间度值 | 接近度值 | 节点度值 |
---|---|---|---|---|---|---|---|
TNF | 1 094.86 | 0.009 3 | 54 | DPP4 | 220.39 | 0.006 6 | 16 |
EGFR | 444.02 | 0.008 1 | 40 | CASP3 | 212.92 | 0.008 1 | 38 |
PPARA | 385.85 | 0.007 2 | 25 | PLG | 196.49 | 0.007 2 | 27 |
ACE | 336.95 | 0.007 7 | 32 | FOS | 176.27 | 0.007 7 | 33 |
REN | 284.97 | 0.007 3 | 29 | MMP2 | 139.78 | 0.007 5 | 32 |
F2 | 278.27 | 0.006 9 | 22 | SERPINE1 | 139.33 | 0.007 4 | 28 |
APP | 263.44 | 0.007 3 | 27 | PIK3CA | 120.40 | 0.006 4 | 23 |
CCND1 | 254.93 | 0.007 6 | 33 | SIRT1 | 108.19 | 0.007 4 | 28 |
HSP90AA1 | 249.20 | 0.007 2 | 29 | MAPK8 | 102.92 | 0.007 4 | 30 |
MMP9 | 232.55 | 0.008 3 | 41 | PTGS2 | 93.59 | 0.007 7 | 34 |
PPARG | 227.57 | 0.007 6 | 32 |
[1] | CHEN H, MIAO H, FENG Y L, et al. Metabolomics in dyslipidemia[J]. Advances in Clinical Chemistry, 2014, (66): 101-119. |
[2] | 诸骏仁, 高润霖, 赵水平, 等. 中国成人血脂异常防治指南(2016年修订版)[J]. 中国循环杂志, 2016, 31(10): 937-953. |
[3] | 吴敏, 冯玲, 沈冬. 高脂血症药物治疗研究进展[J]. 中国临床医生, 2012, 40(3): 35-37. |
[4] | 韩林, 丁博, 王兆丹, 等. 黄鳝肉双酶水解产物的功能特性及其抗氧化活性[J]. 食品与发酵工业, 2014, 40(10): 151-155. DOI: 10.13995/j.cnki.11-1802/ts.2014.10.065. |
[5] | 姚晓燕. 黄鳝骨硫酸软骨素多糖降血脂功能研究[J]. 中国医药导报, 2011, 8(30): 31-33. DOI: 10.3969/j.issn.1673-7210.2011.30.014. |
[6] | 关天竹, 何春艳, 王涛, 等. 基于斑马鱼模型的黄鳝肽减肥作用研究[J]. 食品安全导刊, 2022, (33): 95-98. DOI: 10.16043/j.cnki.cfs.2022.33.020. |
[7] | 李联泰, 安贤惠, 胡江, 等. 黄鳝皮肤黏液抗菌肽的分离纯化及其部分特性研究[J]. 渔业科学进展, 2011, 32(2): 27-33. DOI: 10.3969/j.issn.1000-7075.2011.02.005. |
[8] | 李心怡, 陈荷清, 夏欢, 等. 蜂胶降脂方对高脂血症模型斑马鱼的降血脂作用研究[J]. 世界科学技术—中医药现代化, 2020, 22(5): 1629-1635. |
[9] | 黄帅, 成鹏, 杨宇, 等. 基于网络药理学探究蒲参胶囊治疗高脂血症的作用机制[J]. 南京中医药大学学报, 2019, 35(3): 290-296. DOI: 10.14148/j.issn.1672-0482.2019.0290. |
[10] | CHOUNG S, KIM J M, JOUNG K H, et al. Epidermal growth factor receptor inhibition attenuates non-alcoholic fatty liver disease in diet-induced obese mice[J]. PLoS One. 2019, 14(2): e0210828. DOI: 10.1371/journal.pone.0210828. |
[11] | 钟华, 仇静文, 吴鸿飞, 等. 基于网络药理学研究瓜蒌—薤白药对抗高脂血症作用机制[J]. 中国实验方剂学杂志, 2020, 26(18): 154-165. DOI: 10.13422/j.cnki.syfjx.20201603. |
[12] | OKWAN-DUODU D, WEISS D, PENG Z, et al. Overexpression of myeloid angiotensin-converting enzyme (ACE) reduces atherosclerosis[J]. Biochemical and Biophysical Research Communications, 2019, 520(3): 573-579. DOI: 10.1016/j.bbrc.2019.10.078. |
[13] | 邹振武, 李德忠, 彭绪东, 等. 单味中药鬼针草颗粒治疗高脂血症的疗效及其对血清MMP-9、TIMP-1水平的影响[J]. 心血管康复医学杂志, 2019, 28(5): 661-665. DOI: 10.3969/j.issn.1008-0074.2019.05.25. |
[14] |
YAN H, WANG J, FU H, et al. Discussion on the potential target and mechanism of Dachaihu Decoction in treating hyperlipidemia based on network pharmacology[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(6): 446-459.
doi: 10.5246/jcps.2023.06.038 |
[15] | KIMY U, KEE P, DANILA D, et al. A critical role of PCSK9 in mediating IL-17-producing T cell responses in hyperlipidemia[J]. Immune Network, 2019, 19(6): e41. DOI: 10.4110/in.2019.19.e41. |
[16] | HE Y H, YANG G D, SUN L J, et al. SIRT6 inhibits inflammatory response through regulation of NRF2 in vascular endothelial cells[J]. International Immunopharmacology, 2021, 99: 107926. DOI: 10.1016/j.intimp.2021.107926. |
[17] |
UEKITA H, ISHIBASHI T, SHIOMI M, et al. Integral role of receptor for advanced glycation end products (RAGE) in nondiabetic atherosclerosis[J]. Fukushima Journal of Medical Science, 2019, 65(3): 109-121. DOI: 10.5387/fms.2019-12.
pmid: 31915324 |
[18] | YE J H, LI L, HU Z X. Exploring the molecular mechanism of action of Yinchen Wuling Powder for the treatment of hyperlipidemia, using network pharmacology, molecular docking, and molecular dynamics simulation[J]. BioMed Research International, 2021, 2021: 1-14. DOI: 10.1155/2021/9965906. |
[19] | 柴露露. 银杏叶制剂治疗高脂血症的疗效及作用机制研究[D]. 北京: 中国中医科学院, 2019. |
[20] | 李文毅, 周春阳. 高脂血症与动脉粥样硬化和脂代谢研究进展[J]. 中国药理学与毒理学杂志, 2019, 33(10): 811. |
[21] | WU X Z, PAN J X, YU J, et al. DiDang decoction improves mitochondrial function and lipid metabolism via the HIF-1 signaling pathway to treat atherosclerosis and hyperlipidemia[J]. Journal of Ethnopharmacology, 2023, 308: 116289. DOI: 10.1016/j.jep.2023.116289. |
|