Shandong Science ›› 2024, Vol. 37 ›› Issue (2): 20-28.doi: 10.3976/j.issn.1002-4026.20240017
• Traditional Chinese Medicine and Natural Active Products • Previous Articles Next Articles
Received:2024-01-20
Published:2024-04-20
Online:2024-04-09
CLC Number:
LUO Yaqin, HUANG Wei. Progress in the research on the mechanism of action of Scutellaria baicalensis and its active ingredients in treating ulcerative colitis[J].Shandong Science, 2024, 37(2): 20-28.
| [1] | BURRI E, MAILLARD M H, SCHOEPFER A M, et al. Treatment algorithm for mild and moderate-to-severe ulcerative colitis: an update[J]. Digestion, 2020, 101(S1): 2-15. DOI: 10.1159/000504092. |
| [2] | SEHGAL P, COLOMBEL J F, ABOUBAKR A, et al. Systematic review: safety of mesalazine in ulcerative colitis[J]. Alimentary Pharmacology & Therapeutics, 2018, 47(12): 1597-1609. DOI: 10.1111/apt.14688. |
| [3] | 石磊, 施丽婕. 溃疡性结肠炎中西医发病机制研究[J]. 长春中医药大学学报, 2014, 30(6): 1173-1176. DOI: 10.13463/j.cnki.cczyy.2014.06.079. |
| [4] | 王玉婷, 刘建平, 焦红, 等. 中医药治疗溃疡性结肠炎缓解期研究进展[J]. 西部中医药, 2023, 36(7): 158-161. DOI: 10.12174/j.issn.2096-9600.2023.07.39. |
| [5] | 国家药典委员会. 中华人民共和国药典2020年版一部[S]. 北京: 中国医药科技出版社, 2020:314-315. |
| [6] | 朱磊, 程成, 刘小娟, 等. 溃疡性结肠炎大肠湿热证研究现状与思考[J]. 南京中医药大学学报, 2023, 39(2): 188-193. DOI: 10.14148/j.issn.1672-0482.2023.0188. |
| [7] | 王津燕. 中药黄芩药理作用的研究进展[J]. 内蒙古中医药, 2020, 39(2): 167-168. DOI: 10.16040/j.cnki.cn15-1101.2020.02.098. |
| [8] | 贾文君, 杜锦辉. 甘草泻心汤治疗溃疡性结肠炎作用机制研究进展[J]. 环球中医药, 2022, 15(12): 2495-2500. DOI: 10.3969/j.issn.1674-1749.2022.12.043. |
| [9] |
ZHU L, SHEN H, GU P Q, et al. Baicalin alleviates TNBS-induced colitis by inhibiting PI3K/AKT pathway activation[J]. Experimental and Therapeutic Medicine, 2020, 20(1): 581-590. DOI: 10.3892/etm.2020.8718.
pmid: 32537016 |
| [10] | 陆璐, 刘宇婧, 李瑗, 等. 基于NLRP3相关炎症反应和肠道黏膜屏障功能探究汉黄芩素治疗溃疡性结肠炎小鼠的作用机制[J]. 中华中医药杂志, 2022, 37(10): 5992-5999. |
| [11] | WANG W P, XIA T S, YU X P. Wogonin suppresses inflammatory response and maintains intestinal barrier function via TLR4-MyD88-TAK1-mediated NF-κB pathway in vitro[J]. Inflammation Research: Official Journal of the European Histamine Research Society, 2015, 64(6): 423-431. DOI: 10.1007/s00011-015-0822-0. |
| [12] | MEYNIER M, BAUDU E, ROLHION N, et al. AhR/IL-22 pathway as new target for the treatment of post-infectious irritable bowel syndrome symptoms[J]. Gut Microbes, 2022, 14(1): 2022997. DOI: 10.1080/19490976.2021.2022997. |
| [13] | 王木源, 李军祥, 毛堂友, 等. 清肠温中方对溃疡性结肠炎小鼠AhR/IL-22信号通路的影响[J]. 中国中西医结合消化杂志, 2023, 31(10): 788-792. |
| [14] | LI Y Y, WANG X J, SU Y L, et al. Baicalein ameliorates ulcerative colitis by improving intestinal epithelial barrier via AhR/IL-22 pathway in ILC3s[J]. Acta Pharmacologica Sinica, 2022, 43(6): 1495-1507. DOI: 10.1038/s41401-021-00781-7. |
| [15] |
LAUKOETTER M G, BRUEWER M, NUSRAT A. Regulation of the intestinal epithelial barrier by the apical junctional complex[J]. Current Opinion in Gastroenterology, 2006, 22(2): 85-89. DOI: 10.1097/01.mog.0000203864.48255.4f.
pmid: 16462161 |
| [16] | HUANG S W, FU Y J, XU B, et al. Wogonoside alleviates colitis by improving intestinal epithelial barrier function via the MLCK/pMLC2 pathway[J]. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 2020, 68: 153179. DOI: 10.1016/j.phymed.2020.153179. |
| [17] | 陈思羽, 黄会云, 陈玉, 等. 肠屏障功能障碍及cingulin、claudin-2表达变化在溃疡性结肠炎中的作用[J]. 胃肠病学和肝病学杂志, 2016, 25(1): 43-46. DOI: 10.3969/j.issn.1006-5709.2016.01.010. |
| [18] | 王莉. 黄芩苷通过microRNA对TNF-α诱导的肠上皮细胞通透性的保护机制[D]. 广州: 广州中医药大学, 2017. |
| [19] | DUBINSKY M. Targeting cytokines in inflammatory bowel disease[J]. Gastroenterology & Hepatology, 2023, 19(9): 550-552. |
| [20] | 朱磊, 沈洪, 顾培青, 等. 黄芩苷对溃疡性结肠炎模型大鼠NF-κB表达的影响[J]. 南京中医药大学学报, 2016, 32(5): 447-450. DOI: 10.14148/j.issn.1672-0482.2016.0447. |
| [21] | 朱磊, 沈洪, 顾培青, 等. 黄芩苷对溃疡性结肠炎模型大鼠炎性反应、凋亡的影响及与PI3K/AKT通路的关系[J]. 中华中医药杂志, 2017, 32(9): 4001-4004. |
| [22] | 李天如, 张颖, 谈宁. 黄芩苷减轻小鼠结肠炎损伤的机制研究[J]. 解剖科学进展, 2022, 28(5): 577-580. DOI: 10.16695/j.cnki.1006-2947.2022.05.017. |
| [23] | 成宁宁, 郑晨曦, 代鑫, 等. 黄芩素对葡聚糖硫酸钠诱导的溃疡性结肠炎小鼠的改善作用[J]. 中国新药杂志, 2023, 32(3): 276-282. DOI: 10.3969/j.issn.1003-3734.2023.03.010. |
| [24] |
YAO J, LIU T, CHEN R J, et al. Sphingosine-1-phosphate signal transducer and activator of transcription 3 signaling pathway contributes to baicalein-mediated inhibition of dextran sulfate sodium-induced experimental colitis in mice[J]. Chinese Medical Journal, 2020, 133(3): 292-300. DOI: 10.1097/CM9.0000000000000627.
pmid: 31904729 |
| [25] | 徐薇涵, 张立泽, 李欣, 等. 黄芩素调控热休克蛋白70表达对溃疡性结肠炎大鼠的影响[J]. 中国临床药理学杂志, 2020, 36(1): 36-38. DOI: 10.13699/j.cnki.1001-6821.2020.01.010. |
| [26] | 崔莉, 宁青, 张润桐, 等. 黄芩多糖提取条件优化方法及其对溃疡性结肠炎小鼠的疗效研究[J]. 山东中医杂志, 2020, 39(9): 993-1000. DOI: 10.16295/j.cnki.0257-358x.2020.09.021. |
| [27] | 马杰, 陈韵之, 田蕾. 黄芩多糖通过调节JAK2/STAT3通路和IL-23/IL-17炎性轴改善DSS诱导的UC模型小鼠的炎症[J]. 中山大学学报(医学科学版), 2023, 44(3): 423-429. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0308. |
| [28] | ZHANG C L, ZHANG S, HE W X, et al. Baicalin may alleviate inflammatory infiltration in dextran sodium sulfate-induced chronic ulcerative colitis via inhibiting IL-33 expression[J]. Life Sciences, 2017, 186: 125-132. DOI: 10.1016/j.lfs.2017.08.010. |
| [29] |
FENG J S, GUO C C, ZHU Y Z, et al. Baicalin down regulates the expression of TLR4 and NFkB-p65 in colon tissue in mice with colitis induced by dextran sulfate sodium[J]. International Journal of Clinical and Experimental Medicine, 2014, 7(11): 4063-4072.
pmid: 25550915 |
| [30] | 邹颖, 迟宏罡, 欧阳霖芮, 等. 黄芩苷对实验性结肠炎小鼠TLRs/MyD88通路的作用研究[J]. 天然产物研究与开发, 2014, 26(6): 952-956. DOI: 10.16333/j.1001-6880.2014.06.030. |
| [31] |
SHEN J, CHENG J Z, ZHU S G, et al. Regulating effect of baicalin on IKK/IKB/NF-kB signaling pathway and apoptosis-related proteins in rats with ulcerative colitis[J]. International Immunopharmacology, 2019, 73: 193-200. DOI: 10.1016/j.intimp.2019.04.052.
pmid: 31103874 |
| [32] | 蒋寅, 刘军楼, 朱磊, 等. 黄芩苷对HT-29细胞炎症模型PI3K/NF-κB信号通路的影响及机制探讨[J]. 中国实验方剂学杂志, 2016, 22(12): 118-122. DOI: 10.13422/j.cnki.syfjx.2016120118. |
| [33] |
CUI L, FENG L, ZHANG Z H, et al. The anti-inflammation effect of baicalin on experimental colitis through inhibiting TLR4/NF-κB pathway activation[J]. International Immunopharmacology, 2014, 23(1): 294-303. DOI: 10.1016/j.intimp.2014.09.005.
pmid: 25239813 |
| [34] | 邵晓晓, 王伟中, 马国龙, 等. 黄芩素通过TLR4/NF-κB信号通路对小鼠结肠炎的干预作用[J]. 温州医科大学学报, 2022, 52(11): 861-867. DOI: 10.3969/j.issn.2095-9400.2022.11.001. |
| [35] |
ZHONG X C, SURH Y J, DO S G, et al. Baicalein inhibits dextran sulfate sodium-induced mouse colitis[J]. Journal of Cancer Prevention, 2019, 24(2): 129-138. DOI: 10.15430/JCP.2019.24.2.129.
pmid: 31360692 |
| [36] |
LU F F, LAN Z X, XIN Z Q, et al. Emerging insights into molecular mechanisms underlying pyroptosis and functions of inflammasomes in diseases[J]. Journal of Cellular Physiology, 2020, 235(4): 3207-3221. DOI: 10.1002/jcp.29268.
pmid: 31621910 |
| [37] |
LUO X P, YU Z L, DENG C, et al. Baicalein ameliorates TNBS-induced colitis by suppressing TLR4/MyD88 signaling cascade and NLRP3 inflammasome activation in mice[J]. Scientific Reports, 2017, 7(1): 16374. DOI: 10.1038/s41598-017-12562-6.
pmid: 29180692 |
| [38] |
SUN Y, ZHAO Y, YAO J, et al. Wogonoside protects against dextran sulfate sodium-induced experimental colitis in mice by inhibiting NF-κB and NLRP3 inflammasome activation[J]. Biochemical Pharmacology, 2015, 94(2): 142-154. DOI: 10.1016/j.bcp.2015.02.002.
pmid: 25677765 |
| [39] | CUI L, WANG W, LUO Y, et al. Polysaccharide from Scutellaria baicalensis Georgi ameliorates colitis via suppressing NF-κB signaling and NLRP3 inflammasome activation[J]. International Journal of Biological Macromolecules, 2019, 132: 393-405. DOI: 10.1016/j.ijbiomac.2019.03.230. |
| [40] | BUTIN-ISRAELI V, BUI T M, WIESOLEK H L, et al. Neutrophil-induced genomic instability impedes resolution of inflammation and wound healing[J]. The Journal of Clinical Investigation, 2019, 129(2): 712-726. DOI: 10.1172/JCI122085. |
| [41] | 陈静柔, 张宗军, 吴绮丽, 等. 汉黄芩素通过诱导中性粒细胞凋亡治疗小鼠结肠炎[J]. 中华炎性肠病杂志, 2021, 5(2):162-168. |
| [42] |
GASCOIGNE N R J, RYBAKIN V, ACUTO O, et al. TCR signal strength and T cell development[J]. Annual Review of Cell and Developmental Biology, 2016, 32: 327-348. DOI: 10.1146/annurev-cellbio-111315-125324.
pmid: 27712102 |
| [43] | CRONKITE D A, STRUTT T M. The regulation of inflammation by innate and adaptive lymphocytes[J]. Journal of Immunology Research, 2018, 2018: 1467538. DOI: 10.1155/2018/1467538. |
| [44] | 于丰彦, 黄绍刚, 张海燕, 等. 黄芩苷对溃疡性结肠炎CD4+CD29+抑制作用随机平行对照研究[J]. 实用中医内科杂志, 2014, 28(12): 113-115. DOI: 10.13729/j.issn.1671-7813.2014.12.54. |
| [45] | 于丰彦, 黄绍刚, 张海燕, 等. 溃疡性结肠炎外周血RORC和Foxp3 mRNA表达水平的变化及黄芩苷的干预作用[J]. 辽宁中医杂志, 2014, 41(2): 225-229. DOI: 10.13192/j.issn.1000-1719.2014.02.012. |
| [46] | 于丰彦, 黄绍刚, 张海燕, 等. CD4+CD29+T细胞亚群与溃疡性结肠炎的相关性及黄芩苷的干预作用[J]. 世界华人消化杂志, 2014, 22(24):3710-3717. |
| [47] | YU F Y, HUANG S G, ZHANG H Y, et al. Effects of baicalin in CD4+CD29+T cell subsets of ulcerative colitis patients[J]. World Journal of Gastroenterology, 2014, 20(41): 15299-15309. DOI: 10.3748/wjg.v20.i41.15299. |
| [48] | 于丰彦, 黄绍刚, 张海燕, 等. 黄芩苷对溃疡性结肠炎患者信号转导和转录激活因子表达的影响[J]. 中国中西医结合杂志, 2015, 35(4): 419-424. DOI: 10.7661/CJIM.2015.04.0419. |
| [49] |
ZOU Y, DAI S X, CHI H G, et al. Baicalin attenuates TNBS-induced colitis in rats by modulating the Th17/Treg paradigm[J]. Archives of Pharmacal Research, 2015, 38(10): 1873-1887. DOI: 10.1007/s12272-014-0486-2.
pmid: 25269538 |
| [50] | 赵兵, 邹颖, 郑学宝, 等. 黄芩苷对DSS诱导结肠炎小鼠Th22细胞及IL-22的影响[J]. 世界科学技术-中医药现代化, 2015, 17(6): 1254-1261. |
| [51] | LIU C, LI Y Y, CHEN Y P, et al. Baicalein restores the balance of Th17/treg cells via aryl hydrocarbon receptor to attenuate colitis[J]. Mediators of Inflammation, 2020, 2020: 5918587. DOI: 10.1155/2020/5918587. |
| [52] |
XIAO W M, YIN M, WU K Y, et al. High-dose wogonin exacerbates DSS-induced colitis by up-regulating effector T cell function and inhibiting Treg cell[J]. Journal of Cellular and Molecular Medicine, 2017, 21(2): 286-298. DOI: 10.1111/jcmm.12964.
pmid: 27641629 |
| [53] | 冯锦山, 王士群, 叶营, 等. B1和B10细胞在溃疡性结肠炎患者外周血中的表达及黄芩苷对其体外表达的影响[J]. 中国实验方剂学杂志, 2013, 19(10): 245-248. DOI: 10.11653/syfj2013100245. |
| [54] | 冯锦山. CD19+CD5+CD1d+B淋巴细胞与溃疡性结肠炎的相关性及黄芩苷的干预作用研究[D]. 广州: 南方医科大学, 2014. |
| [55] | WU M M, WANG Q M, HUANG B Y, et al. Dioscin ameliorates murine ulcerative colitis by regulating macrophage polarization[J]. Pharmacological Research, 2021, 172: 105796. DOI: 10.1016/j.phrs.2021.105796. |
| [56] | DAI S X, ZOU Y, FENG Y L, et al. Baicalin down-regulates the expression of macrophage migration inhibitory factor (MIF) effectively for rats with ulcerative colitis[J]. Phytotherapy Research: PTR, 2012, 26(4): 498-504. DOI: 10.1002/ptr.3581. |
| [57] |
ZHU W, JIN Z S, YU J B, et al. Baicalin ameliorates experimental inflammatory bowel disease through polarization of macrophages to an M2 phenotype[J]. International Immunopharmacology, 2016, 35: 119-126. DOI: 10.1016/j.intimp.2016.03.030.
pmid: 27039210 |
| [58] | LI C Y, WU X Y, TONG J B, et al. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy[J]. Stem Cell Research & Therapy, 2015, 6(1): 55. DOI: 10.1186/s13287-015-0066-5. |
| [59] | 陈敬根, 周凌, 汪渝, 等. 黄芩素促进骨髓间充质干细胞归巢参与溃疡性结肠炎治疗的研究[J]. 实用药物与临床, 2018, 21(8): 871-875. DOI: 10.14053/j.cnki.ppcr.201808006. |
| [60] | 石磊, 孙中美, 原文静, 等. 基于分子机制的溃疡性结肠炎中医治疗研究进展[J]. 中医药导报, 2019, 25(4): 125-129. DOI: 10.13862/j.cnki.cn43-1446/r.2019.04.036. |
| [61] | FENG Y, GUO M. Effect of baicalin on TNBS-induced colonic inflammatory injury in rats[J]. Health, 2023, 15(9): 938-943. DOI: 10.4236/health.2023.159062. |
| [62] |
ZHU L, XU L Z, ZHAO S, et al. Protective effect of baicalin on the regulation of Treg/Th17 balance, gut microbiota and short-chain fatty acids in rats with ulcerative colitis[J]. Applied Microbiology and Biotechnology, 2020, 104(12): 5449-5460. DOI: 10.1007/s00253-020-10527-w.
pmid: 32322944 |
| [63] | 张霞, 杜文泽, 赵汉清, 等. 汉黄芩苷对溃疡性结肠炎大鼠促炎因子、氧化应激标志物水平的影响及黏膜修复作用[J]. 中国老年学杂志, 2022, 42(12): 2994-2998. DOI: 10.3969/j.issn.1005-9202.2022.12.041. |
| [64] | SU Y L, LIANG J J, ZHANG M L, et al. Wogonin regulates colonocyte metabolism via PPARγ to inhibit Enterobacteriaceae against dextran sulfate sodium-induced colitis in mice[J]. Phytotherapy Research: PTR, 2023, 37(3): 872-884. DOI: 10.1002/ptr.7677. |
|
||
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits third parties to freely share (i.e., copy and redistribute the material in any medium or format) and adapt (i.e., remix, transform, or build upon the material) the articles published in this journal, provided that appropriate credit is given, a link to the license is provided, and any changes made are indicated. The material may not be used for commercial purposes. For details of the CC BY-NC 4.0 license, please visit: https://creativecommons.org/licenses/by-nc/4.0
