Shandong Science ›› 2024, Vol. 37 ›› Issue (2): 12-19.doi: 10.3976/j.issn.1002-4026.20240028
• Traditional Chinese Medicine and Natural Active Products • Previous Articles Next Articles
LIU Shuanga,b(
), DONG Hongjinga,b, CHEN Panpana,b, WANG Xiaoa,b,*(
)
Received:2024-02-20
Published:2024-04-20
Online:2024-04-09
CLC Number:
LIU Shuang, DONG Hongjing, CHEN Panpan, WANG Xiao. Research progress on the mechanisms by which natural phenolic compounds alleviate hyperuricemia[J].Shandong Science, 2024, 37(2): 12-19.
| [1] | WANG C Y, DAI J G. Research progress on the prevention and treatment of hyperuricemia by medicinal and edible plants and its bioactive components[J]. Frontiers in Nutrition, 2023, 10: 1186161. DOI: 10.3389/fnut.2023.1186161. |
| [2] | LIANG G Y, NIE Y C, CHANG Y B, et al. Protective effects of Rhizoma smilacis glabrae extracts on potassium oxonate- and monosodium urate-induced hyperuricemia and gout in mice[J]. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 2019, 59: 152772. DOI: 10.1016/j.phymed.2018.11.032. |
| [3] | ZHANG M, ZHU X X, WU J, et al. Prevalence of hyperuricemia among Chinese adults: findings from two nationally representative cross-sectional surveys in 2015-16 and 2018-19[J]. Frontiers in Immunology, 2022, 12: 791983. DOI: 10.3389/fimmu.2021.791983. |
| [4] |
MAJOR T J, DALBETH N, STAHL E A, et al. An update on the genetics of hyperuricaemia and gout[J]. Nature Reviews Rheumatology, 2018, 14(6): 341-353. DOI: 10.1038/s41584-018-0004-x.
pmid: 29740155 |
| [5] | 郭敏侠, 李娜芝, 张初玲, 等. 黄酮类化合物抗痛风和痛风性关节炎作用及机制的研究进展[J]. 中药新药与临床药理, 2022, 33(9): 1283-1288. DOI: 10.19378/j.issn.1003-9783.2022.09.020. |
| [6] | 林玉仙, 黄逸薇, 熊建华, 等. 治疗痛风药物的研究进展[J]. 中国乡村医药, 2021, 28(24): 87-88. DOI: 10.19542/j.cnki.1006-5180.005844. |
| [7] | RASHMI H B, NEGI P S. Phenolic acids from vegetables: a review on processing stability and health benefits[J]. Food Research International, 2020, 136: 109298. DOI: 10.1016/j.foodres.2020.109298. |
| [8] | HELENO S A, MARTINS A, QUEIROZ M J R P, et al. Bioactivity of phenolicacids: metabolites versus parent compounds: a review[J]. Food Chemistry, 2015, 173: 501-513. DOI: 10.1016/j.foodchem.2014.10.057. |
| [9] | 李胜男, 曹坦, 刘雅萍. 药用植物中咖啡酰奎宁酸类化合物的研究进展[J]. 中国民族民间医药, 2023, 32(7): 45-51. |
| [10] | 曾佳, 白雪, 尹相林, 等. 尿酸与DNA损伤之间关系的研究进展[J]. 生命科学, 2023, 35(10): 1372-1379. DOI: 10.13376/j.cbls/20230183. |
| [11] | 王爱华, 金玥, 吴越, 等. 具有黄嘌呤氧化酶抑制作用的中药及中成药治疗高尿酸血症研究进展[J]. 天津中医药, 2019, 36(12): 1241-1245. DOI: 10.11656/j.issn.1672-1519.2019.12.23. |
| [12] |
RUIZ A, GAUTSCHI I, SCHILD L, et al. Human mutations in SLC2A9 (Glut9) affect transport capacity for urate[J]. Frontiers in Physiology, 2018, 9: 476. DOI: 10.3389/fphys.2018.00476.
pmid: 29967582 |
| [13] | MANDAL A K, MERCADO A, FOSTER A, et al. Uricosuric targets of tranilast[J]. Pharmacology Research & Perspectives, 2017, 5(2): e00291. DOI: 10.1002/prp2.291. |
| [14] | 辛家东, 周嘉宝, 吴志远, 等. 尿酸排泄及其相关转运蛋白在高尿酸血症中的研究进展[J]. 中国全科医学, 2023, 26(15): 1916-1922. DOI: 10.12114/j.issn.1007-9572.2022.0747. |
| [15] |
JOHNSON R J, KIVLIGHN S D, KIM Y G, et al. Reappraisal of the pathogenesis and consequences of hyperuricemia in hypertension, cardiovascular disease, and renal disease[J]. American Journal of Kidney Diseases, 1999, 33(2): 225-234. DOI: 10.1016/s0272-6386(99)70295-7.
pmid: 10023633 |
| [16] | CIRILLO P, GERSCH M S, MU W, et al. Ketohexokinase-dependent metabolism of fructose induces proinflammatory mediators in proximal tubular cells[J]. Journal of the American Society of Nephrology: JASN, 2009, 20(3): 545-553. DOI: 10.1681/ASN.2008060576. |
| [17] | 周茹, 张明. 痛风、高尿酸血症与肥胖及脂代谢紊乱的关系[J]. 世界中西医结合杂志, 2014, 9(5): 554-557. DOI: 10.13935/j.cnki.sjzx.2014.05.031. |
| [18] | 陆宏虹, 郭志荣, 刘士俊, 等. 血尿酸与代谢综合征及其各组分的相关性研究[J]. 中国糖尿病杂志, 2008, 16(5): 274-277. DOI: 10.3321/j.issn:1006-6187.2008.05.007. |
| [19] | GIL-CAMPOS M, AGUILERA C M, CAÑETE R, et al. Uric acid is associatedwith features of insulin resistance syndrome in obese children at prepubertal stage[J]. Nutricion Hospitalaria, 2009, 24(5): 607-613. |
| [20] | YAMADA N, IWAMOTO C, KANO H, et al. Evaluation of purine utilization by Lactobacillus gasseri strains with potential to decrease the absorption of food-derived purines in the human intestine[J]. Nucleosides, Nucleotides & Nucleic Acids, 2016, 35(10/11/12): 670-676. DOI: 10.1080/15257770.2015.1125000. |
| [21] | CRANE J K. Role of host xanthine oxidase in infection due to enteropathogenic and Shiga-toxigenic Escherichia coli[J]. Gut Microbes, 2013, 4(5): 388-391. DOI: 10.4161/gmic.25584. |
| [22] | LI M, YANG D B, MEI L, et al. Screening and characterization of purine nucleoside degrading lactic acid bacteria isolated from Chinese sauerkraut and evaluation of the serum uric acid lowering effect in hyperuricemic rats[J]. PLoS One, 2014, 9(9): e105577. DOI: 10.1371/journal.pone.0105577. |
| [23] | KUO Y W, HSIEH S H, CHEN J F, et al. Lactobacillus reuteri TSR332 and Lactobacillus fermentum TSF331 stabilize serum uric acid levels and prevent hyperuricemia in rats[J]. PeerJ, 2021, 9: e11209. DOI: 10.7717/peerj.11209. |
| [24] | WRIGLEY R, PHIPPS-GREEN A J, TOPLESS R K, et al. Pleiotropic effect of the ABCG2 gene in gout: involvement in serum urate levels and progression from hyperuricemia to gout[J]. Arthritis Research & Therapy, 2020, 22(1): 45. DOI: 10.1186/s13075-020-2136-z. |
| [25] | HANDAYANI I, UTAMI T, HIDAYAT C, et al. Screening of lactic acid bacteria producing uricase and stability assessment in simulated gastrointestinal conditions[J]. International Food Research Journal, 2018, 25(4): 1661-1667. |
| [26] | SONG S Y, LOU Y, MAO Y Y, et al. Alteration of gut microbiome and correlated amino acid metabolism contribute to hyperuricemia and Th17-driven inflammation in Uox-KO mice[J]. Frontiers in Immunology, 2022, 13: 804306. DOI: 10.3389/fimmu.2022.804306. |
| [27] | WAN Y, WANG F, ZOU B, et al. Molecular mechanism underlying the ability of caffeic acid to decrease uric acid levels in hyperuricemia rats[J]. Journal of Functional Foods, 2019, 57: 150-156. DOI: 10.1016/j.jff.2019.03.038. |
| [28] | MENG Z Q, TANG Z H, YAN Y X, et al. Study on the anti-gout activity of chlorogenic acid: improvement on hyperuricemia and gouty inflammation[J]. The American Journal of Chinese Medicine, 2014, 42(6): 1471-1483. DOI: 10.1142/S0192415X1450092X. |
| [29] | 朱春胜, 张冰, 林志健, 等. 菊苣降尿酸药效验证[J]. 中华中医药杂志, 2018, 33(11): 4933-4936. |
| [30] | LIU F, DENG C, CAO W, et al. Phytochemicals of Pogostemon Cablin (Blanco) Benth. aqueous extract: their xanthine oxidase inhibitory activities[J]. Biomedicine & Pharmacotherapy, 2017, 89: 544-548. DOI: 10.1016/j.biopha.2017.01.040. |
| [31] | ISHAQ M, MEHMOOD A, REHMAN A U, et al. Antihyperuricemic effect of dietary polyphenol sinapic acid commonly present in various edible food plants[J]. Journal of Food Biochemistry, 2020, 44(2): e13111. DOI: 10.1111/jfbc.13111. |
| [32] |
LIN L Z, YANG Q Y, ZHAO K, et al. Identification of the free phenolic profile of Adlay bran by UPLC-QTOF-MS/MS and inhibitory mechanisms of phenolic acids against xanthine oxidase[J]. Food Chemistry, 2018, 253: 108-118. DOI: 10.1016/j.foodchem.2018.01.139.
pmid: 29502809 |
| [33] | 刘丽, 桂利利, 伍超奇, 等. UPLC-MS/MS法测定蛇菰中7种成分含量及其活性成分没食子酸的降尿酸作用研究[J]. 中药药理与临床, 2023, 39(9): 49-55. DOI: 10.13412/j.cnki.zyyl.20230331.004. |
| [34] | 金红娜, 宋烨威, 崔卫波, 等. 儿茶素单体对小鼠急性高尿酸血症的作用[J]. 茶叶科学, 2016, 36(4): 347-353. DOI: 10.13305/j.cnki.jts.2016.04.002. |
| [35] | 马富利, 任国艳, 潘若瑶. 白藜芦醇降糖作用机制的最新研究进展[J]. 食品与发酵工业, 2023, 49(23): 355-361. DOI: 10.13995/j.cnki.11-1802/ts.035273. |
| [36] |
MENG Z Q, YAN Y X, TANG Z H, et al. Anti-hyperuricemic and nephroprotective effects of Rhein in hyperuricemic mice[J]. Planta Medica, 2015, 81(4): 279-285. DOI: 10.1055/s-0034-1396241.
pmid: 25760382 |
| [37] | SUN Z R, LIU H R, HU D, et al. Ellagic acid exerts beneficial effects on hyperuricemia by inhibiting xanthine oxidase and NLRP3 inflammasome activation[J]. Journal of Agricultural and Food Chemistry, 2021, 69(43): 12741-12752. DOI: 10.1021/acs.jafc.1c05239. |
| [38] | ZHANG D, ZHAO M J, LI Y M, et al. Natural xanthine oxidase inhibitor 5-O-caffeoylshikimic acid ameliorates kidney injury caused by hyperuricemia in mice[J]. Molecules, 2021, 26(23): 7307. DOI: 10.3390/molecules26237307. |
| [39] | DAI H N, LV S, FU X Q, et al. Identification of scopoletin and chlorogenic acid as potential active components in sunflower calathide enzymatically hydrolyzedextract towards hyperuricemia[J]. Applied Sciences, 2021, 11(21): 10306. DOI: 10.3390/app112110306. |
| [40] | ZHOU X F, ZHANG B W, ZHAO X L, et al. Chlorogenic acid supplementation ameliorates hyperuricemia, relieves renal inflammation, and modulates intestinal homeostasis[J]. Food & Function, 2021, 12(12): 5637-5649. DOI: 10.1039/d0fo03199b. |
| [41] | JIANG L Y, WU Y L, QU C, et al. Hypouricemic effect of Gallic acid, a bioactive compound from Sonneratia apetala leaves and branches, on hyperuricemic mice[J]. Food & Function, 2022, 13(19): 10275-10290. DOI: 10.1039/D2FO02068H. |
| [42] | LEE C T, CHANG L C, LIU C W, et al. Negative correlation between serum uric acid and kidney URAT1 mRNA expression caused by resveratrol in rats[J]. Molecular Nutrition & Food Research, 2017, 61(10): 10.1002/mnfr.201601030. DOI: 10.1002/mnfr.201601030. |
| [43] | MUHAMMAD ABDUL KADAR N N, AHMAD F, TEOH S L, et al. Caffeic acid on metabolic syndrome: a review[J]. Molecules, 2021, 26(18): 5490. DOI: 10.3390/molecules26185490. |
| [44] | ZHANG N H, ZHOU J X, ZHAO L, et al. Dietary ferulic acid ameliorates metabolism syndrome-associated hyperuricemia in rats via regulating uric acid synthesis, glycolipid metabolism, and hepatic injury[J]. Frontiers in Nutrition, 2022, 9: 946556. DOI: 10.3389/fnut.2022.946556. |
| [45] | ZHANG X M, NIE Q, ZHANG Z M, et al. Resveratrol affects the expression of uric acid transporter by improving inflammation[J]. Molecular Medicine Reports, 2021, 24(2): 564. DOI: 10.3892/mmr.2021.12203. |
| [46] | 董晓琴. 大黄酸对果糖诱导的高尿酸大鼠的肾脏保护作用研究[J]. 海峡药学, 2016, 28(3): 42-44. DOI: 10.3969/j.issn.1006-3765.2016.03.017. |
| [47] | ELSEWEIDY M M, ELESAWY A E, SOBH M S, et al. Ellagic acid ameliorates high fructose-induced hyperuricemia and non-alcoholic fatty liver in Wistar rats: focusing on the role of C1q/tumor necrosis factor-related protein-3 and ATP citrate lyase[J]. Life Sciences, 2022, 305: 120751. DOI: 10.1016/j.lfs.2022.120751. |
| [48] | WANG J, CHEN Y, ZHONG H, et al. The gut microbiota as a target to control hyperuricemia pathogenesis: potential mechanisms and therapeutic strategies[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(14): 3979-3989. DOI: 10.1080/10408398.2021.1874287. |
| [49] |
ZHOU X F, ZHANG B W, ZHAO X L, et al. Chlorogenic acid prevents hyperuricemia nephropathy via regulating TMAO-related gut microbes and inhibiting the PI3K/AKT/mTOR pathway[J]. Journal of Agricultural and Food Chemistry, 2022, 70(33): 10182-10193. DOI: 10.1021/acs.jafc.2c03099.
pmid: 35950815 |
| [50] | WANG Q, LIN B F, LI Z F, et al. Cichoric acid ameliorates monosodium urate-induced inflammatory response by reducing NLRP3 inflammasome activation via inhibition of NF- k B signaling pathway[J]. Evidence-Based Complementary and Alternative Medicine: ECAM, 2021, 2021: 8868527. DOI: 10.1155/2021/8868527. |
| [51] | JHANG J J, LU C C, HO C Y, et al. Protective effects of catechin against monosodium urate-induced inflammation through the modulation of NLRP3 inflammasome activation[J]. Journal of Agricultural and Food Chemistry, 2015, 63(33): 7343-7352. DOI: 10.1021/acs.jafc.5b02605. |
| [52] | CHANG W C, CHU M T, HSU C Y, et al. Rhein, an anthraquinone drug, suppresses the NLRP3 inflammasome and macrophage activation in urate crystal-induced gouty inflammation[J]. The American Journal of Chinese Medicine, 2019, 47(1): 135-151. DOI: 10.1142/S0192415X19500071. |
| [53] |
CHEN G, JIA P, YIN Z Y, et al. Paeonol ameliorates monosodium urate-induced arthritis in rats through inhibiting nuclear factor-κB-mediated proinflammatory cytokine production[J]. Phytotherapy Research, 2019, 33(11): 2971-2978. DOI: 10.1002/ptr.6472.
pmid: 31407455 |
| [54] | CHEN G, GUO T W, YANG L. Paeonol reduces IL-β production by inhibiting the activation of nucleotide oligomerization domain-like receptor protein-3 inflammasome and nuclear factor-κB in macrophages[J]. Biochemistry and Cell Biology, 2022, 100(1): 28-36. DOI: 10.1139/bcb-2021-0255. |
|
||
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits third parties to freely share (i.e., copy and redistribute the material in any medium or format) and adapt (i.e., remix, transform, or build upon the material) the articles published in this journal, provided that appropriate credit is given, a link to the license is provided, and any changes made are indicated. The material may not be used for commercial purposes. For details of the CC BY-NC 4.0 license, please visit: https://creativecommons.org/licenses/by-nc/4.0