Shandong Science ›› 2022, Vol. 35 ›› Issue (5): 26-36.doi: 10.3976/j.issn.1002-4026.2022.05.004
• Pharmacology and Toxicology • Previous Articles Next Articles
LIU Xue-ting1a(), SUN Xiao-hui2, ZHU Jian-min2,*(
), LI Lin1b, LI Wen-yue1b
Received:
2021-11-02
Online:
2022-10-20
Published:
2022-10-10
Contact:
ZHU Jian-min
E-mail:liuxueting1112021@126.com;jinjin20021023@126.com
CLC Number:
LIU Xue-ting, SUN Xiao-hui, ZHU Jian-min, LI Lin, LI Wen-yue. Mechanism of the anti-breast cancer effect of Sparganii Rhizoma-Curcumae Rhizoma herbal pair based on network pharmacology and molecular docking[J].Shandong Science, 2022, 35(5): 26-36.
Table 1
The main biological processes involved in the treatment of breast cancer using Sparganii Rhizoma-Curcumae Rhizoma(Top 10)"
序号 | 生物过程 | 基因数 | P值 |
---|---|---|---|
1 | 对雌二醇的反应 | 8 | 2.51×10-9 |
2 | 缺乏配体的外源性凋亡信号通路 | 6 | 2.02×10-9 |
3 | 对药物的反应 | 10 | 4.89×10-8 |
4 | RNA聚合酶Ⅱ启动子转录的正调控 | 14 | 4.45×10-7 |
5 | RNA聚合酶Ⅱ启动子起始转录 | 7 | 1.99×10-6 |
6 | 类固醇激素介导的信号通路 | 5 | 1.21×10-5 |
7 | 血管生成 | 7 | 1.80×10-5 |
8 | 转录DNA模板正调控 | 9 | 3.45×10-5 |
9 | 对脂多糖的反应 | 6 | 5.31×10-5 |
10 | 缺氧反应 | 6 | 6.65×10-5 |
Table 2
The main molecular functions involved in the treatment of breast cancer using Sparganii Rhizoma-Curcumae Rhizoma(Top 10)"
序号 | 分子功能 | 基因数 | P值 |
---|---|---|---|
1 | 酶结合 | 14 | 8.27×10-13 |
2 | 类固醇激素受体 | 7 | 4.84×10-9 |
3 | 类固醇结合 | 5 | 5.57×10-7 |
4 | RNA聚合酶II转录因子活性,配体激活序列 特异性DNA结合 | 5 | 1.84×10-6 |
5 | 序列特异性DNA结合 | 9 | 3.50×10-5 |
6 | 蛋白质同源二聚活性 | 10 | 6.21×10-5 |
7 | 转录因子结合 | 7 | 6.78×10-5 |
8 | 核心启动子序列特异性DNA结合 | 4 | 1.65×10-4 |
9 | 蛋白质结合 | 34 | 3.54×10-4 |
10 | 半胱氨酸型内肽酶活性参与细胞凋亡过程 | 3 | 4.63×10-4 |
Table 3
The main cellular components involved in the treatment of breast cancer using Sparganii Rhizoma-Curcumae Rhizoma(Top 10)"
序号 | 细胞组分 | 基因数 | P值 |
---|---|---|---|
1 | 膜筏 | 6 | 1.06×10-4 |
2 | 细胞质 | 19 | 1.83×10-4 |
3 | 核 | 25 | 1.93×10-4 |
4 | 传递神经元 | 6 | 2.05×10-4 |
序号 | 细胞组分 | 基因数 | P值 |
5 | 核质 | 17 | 2.63×10-4 |
6 | 线粒体外膜 | 5 | 3.77×10-4 |
7 | 胞膜微囊 | 4 | 4.50×10-4 |
8 | 核染色质 | 5 | 9.96×10-4 |
9 | 线粒体 | 10 | 2.84×10-3 |
10 | 内质网 | 7 | 1.12×10-2 |
Table 4
Molecular docking results of the effective active ingredients and core targets"
PDB编号 | 核心靶点 | 有效活性成分 | 结合自由能/(kJ·mol-1) |
---|---|---|---|
6OSN | JUN | 常春藤皂苷元 | -5.3 |
反式软骨酸 | -5.2 | ||
β-谷甾醇 | -6.2 | ||
PDB编号 | 核心靶点 | 有效活性成分 | 结合自由能/(kJ·mol-1) |
芒柄花黄素 | -5.4 | ||
豆甾醇 | -6.3 | ||
2DKO | CASP3 | 常春藤皂苷元 | -8.1 |
反式软骨酸 | -5.1 | ||
β-谷甾醇 | -7.7 | ||
芒柄花黄素 | -6.5 | ||
豆甾醇 | -8.2 | ||
3NT1 | PTGS2 | 常春藤皂苷元 | -9.2 |
反式软骨酸 | -5.9 | ||
β-谷甾醇 | -9.1 | ||
芒柄花黄素 | -9.3 | ||
豆甾醇 | -8.7 |
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
doi: 10.3322/caac.21660 pmid: 33538338 |
[2] |
TRAN S, HICKEY M, SAUNDERS C, et al. Nonpharmacological therapies for the management of menopausal vasomotor symptoms in breast cancer survivors[J]. Supportive Care in Cancer, 2021, 29(3): 1183-1193. DOI: 10.1007/s00520-020-05754-w.
doi: 10.1007/s00520-020-05754-w |
[3] |
卢泰成, 许博文, 李杰. 王清任活血化瘀法在肿瘤治疗中的应用[J]. 世界中医药, 2021, 16(10): 1616-1619. DOI: 10.3969/j.issn.1673-7202.2021.10.023.
doi: 10.3969/j.issn.1673-7202.2021.10.023 |
[4] |
陈桂芬. 血瘀证乳腺癌与分子分型及预后关系的相关性研究[J]. 中国现代医药杂志, 2019, 21(7): 5-8. DOI: 10.3969/j.issn.1672-9463.2019.07.002.
doi: 10.3969/j.issn.1672-9463.2019.07.002 |
[5] |
寇露露, 刘海霞, 邵妤, 等. 三棱、莪术抗肿瘤生物活性研究[J]. 吉林中医药, 2017, 37(7): 722-724. DOI: 10.13463/j.cnki.jlzyy.2017.07.021.
doi: 10.13463/j.cnki.jlzyy.2017.07.021 |
[6] |
陈晓军, 韦洁, 苏华, 等. 莪术药理作用的研究新进展[J]. 药学研究, 2018, 37(11): 664-668. DOI: 10.13506/j.cnki.jpr.2018.11.011.
doi: 10.13506/j.cnki.jpr.2018.11.011 |
[7] |
李林, 陆兔林, 卞慧敏, 等. 莪术活血化瘀有效物质研究[J]. 上海中医药大学学报, 2004, 18(3): 40-42. DOI: 10.16306/j.1008-861x.2004.03.014.
doi: 10.16306/j.1008-861x.2004.03.014 |
[8] |
尹定聪, 杨华升. 莪术油抗肿瘤作用的研究进展[J]. 中医药导报, 2018, 24(3): 62-63. DOI: 10.13862/j.cnki.cn43-1446/r.2018.03.020.
doi: 10.13862/j.cnki.cn43-1446/r.2018.03.020 |
[9] |
袁甜, 崔琳琳, 王莹, 等. 中药网络药理学最新进展[J]. 中医药学报, 2021, 49(1): 101-106. DOI: 10.19664/j.cnki.1002-2392.210023.
doi: 10.19664/j.cnki.1002-2392.210023 |
[10] |
HSIN K Y, GHOSH S, KITANO H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology[J]. PLoS One, 2013, 8(12): e83922. DOI: 10.1371/journal.pone.0083922.
doi: 10.1371/journal.pone.0083922 |
[11] |
CHENG L, SHI L, WU J, et al. A hederagenin saponin isolated from Clematis ganpiniana induces apoptosis in breast cancer cells via the mitochondrial pathway[J]. Oncology Letters, 2018, 15(2):1797-1743. DOI: 10.3892/ol.2017.7494.
doi: 10.3892/ol.2017.7494 |
[12] |
RAMALINGAM S, PACKIRISAMY M, KARUPPIAH M, et al. Effect of β-sitosterol on glucose homeostasis by sensitization of insulin resistance via enhanced protein expression of PPRγ and glucose transporter 4 in high fat diet and streptozotocin-induced diabetic rats[J]. Cytotechnology, 2020, 72(3): 357-366. DOI: 10.1007/s10616-020-00382-y.
doi: 10.1007/s10616-020-00382-y pmid: 32124158 |
[13] |
GAUTAM M, THAPA R K, GUPTA B, et al. Phytosterol-loaded CD44 receptor-targeted PEGylated nano-hybridPhyto-liposomes for synergistic chemotherapy[J]. Expert Opinion on Drug Delivery, 2020, 17(3): 423-434. DOI: 10.1080/17425247.2020.1727442.
doi: 10.1080/17425247.2020.1727442 |
[14] |
WU X Y, XU H, WU Z F, et al. Formononetin, a novel FGFR2 inhibitor, potently inhibits angiogenesis and tumor growth in preclinical models[J]. Oncotarget, 2015, 6(42): 44563-44578. DOI: 10.18632/oncotarget.6310.
doi: 10.18632/oncotarget.6310 pmid: 26575424 |
[15] |
贾绍华, 刘丽娜, 颜廷华. 芒柄花素诱导人乳腺癌MCF-7细胞凋亡及其氧化应激的机制[J]. 华西药学杂志, 2020, 35(4): 385-391. DOI: 10.13375/j.cnki.wcjps.2020.04.009.
doi: 10.13375/j.cnki.wcjps.2020.04.009 |
[16] |
WU Q H, WU W D, FU B S, et al. JNK signaling in cancer cell survival[J]. Medicinal Research Reviews, 2019, 39(6): 2082-2104. DOI: 10.1002/med.21574.
doi: 10.1002/med.21574 pmid: 30912203 |
[17] |
YADAV P, YADAV R, JAIN S, et al. Caspase-3: A primary target for natural and synthetic compounds for cancer therapy[J]. Chemical Biology & Drug Design, 2021, 98(1): 144-165. DOI: 10.1111/cbdd.13860.
doi: 10.1111/cbdd.13860 |
[18] |
PENG Y L, WANG Y, TANG N, et al. Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathway[J]. Journal of Experimental & Clinical Cancer Research, 2018, 37(1): 1-14. DOI: 10.1186/s13046-018-0926-9.
doi: 10.1186/s13046-018-0926-9 |
[19] |
YANG W, HE X, HE C J, et al. Impact of ESR1 polymorphisms on risk of breast cancer in the Chinese Han population[J]. Clinical Breast Cancer, 2021, 21(3): e235-e242. DOI: 10.1016/j.clbc.2020.10.003.
doi: 10.1016/j.clbc.2020.10.003 pmid: 33281037 |
[20] |
GAO S, DING B S, LOU W Y. microRNA-dependent modulation of genes contributes to ESR1's effect on ERα positive breast cancer[J]. Frontiers in Oncology, 2020, 10: 753. DOI: 10.3389/fonc.2020.00753.
doi: 10.3389/fonc.2020.00753 pmid: 32500028 |
[21] |
GU G W, TIAN L, HERZOG S K, et al. Hormonal modulationof ESR1 mutant metastasis[J]. Oncogene, 2021, 40(5): 997-1011. DOI: 10.1038/s41388-020-01563-x.
doi: 10.1038/s41388-020-01563-x |
[22] |
DASHTI S, TAHERIAN-ESFAHANI Z, KHOLGHI-OSKOOEI V, et al. In silico identification of MAPK14-related lncRNAs and assessment of their expression in breast cancer samples[J]. Scientific Reports, 2020, 10(1): 1-12. DOI: 10.1038/s41598-020-65421-2.
doi: 10.1038/s41598-020-65421-2 |
[23] |
WANG L P, SHI H M, LIU Y, et al. Cystathionine-γ-lyase promotes the metastasis of breast cancer via the VEGF signaling pathway[J]. International Journal of Oncology, 2019, 55(2): 473-487. DOI: 10.3892/ijo.2019.4823.
doi: 10.3892/ijo.2019.4823 |
[24] |
SIA D, ALSINET C, NEWELL P, et al. VEGF signaling in cancer treatment[J]. Current Pharmaceutical Design, 2014, 20(17): 2834-2842. DOI: 10.2174/13816128113199990590.
doi: 10.2174/13816128113199990590 pmid: 23944367 |
[25] |
WALDNER M J, NEURATH M F. Targeting the VEGF signaling pathway in cancer therapy[J]. Expert Opinion on Therapeutic Targets, 2012, 16(1): 5-13. DOI: 10.1517/14728222.2011.641951.
doi: 10.1517/14728222.2011.641951 pmid: 22239434 |
[26] |
MARTÍNEZ-REZA I, DÍAZ L, GARCÍA-BECERRA R. Preclinical and clinical aspects of TNF-α and its receptors TNFR1 and TNFR2 in breast cancer[J]. Journal of Biomedical Science, 2017, 24(1): 1-8. DOI: 10.1186/s12929-017-0398-9.
doi: 10.1186/s12929-017-0398-9 |
[27] |
LIU W J, LU X Q, SHI P G, et al. TNF-α increases breast cancer stem-like cells through up-regulating TAZ expression via the non-canonical NF-κB pathway[J]. Scientific Reports, 2020, 10(1): 1-11. DOI: 10.1038/s41598-020-58642-y.
doi: 10.1038/s41598-020-58642-y |
[28] |
欧宏宇, 朱海宏, 朱文君, 等. 抗菌肽LL-37通过激活p53信号通路诱导胃癌AGS细胞凋亡[J]. 安徽医科大学学报, 2021, 56(4): 571-576. DOI: 10.19405/j.cnki.issn1000-1492.2021.04.013.
doi: 10.19405/j.cnki.issn1000-1492.2021.04.013 |
[29] |
罗浩泉, 林忠顺, 黄小林. 乳腺良恶性肿瘤患者血清催乳素水平变化研究[J]. 中国医学创新, 2018, 15(12): 123-125. DOI: 10.3969/j.issn.1674-4985.2018.12.035.
doi: 10.3969/j.issn.1674-4985.2018.12.035 |
[30] |
BORCHERDING D C, HUGO E R, FOX S R, et al. Suppression of breast cancer by small molecules that block the prolactin receptor[J]. Cancers, 2021, 13(11): 2662. DOI: 10.3390/cancers13112662.
doi: 10.3390/cancers13112662 |
|