[1] |
ALLANR P, ARIAS P A, BERGER S, et al. IPCC, 2021: Summary for policymakers in: climate change 2021: the physical science basis. Contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change[EB/OL].[2024-01-05]. https://archive.connect.h1.co/article/740620545/#eval793587812.
|
[2] |
刘希洋, 蔡勤禹. 近二十年中国海洋灾害史研究的进展与问题[J]. 海洋湖沼通报, 2019(6): 157-165.
|
[3] |
SILLMANN J, KHARIN VV, ZWIERS F W, et al. Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(6): 2473-2493. DOI: 10.1002/jgrd.50188.
|
[4] |
杨小欣, 吴晓芬, 许建平. 热带太平洋海域上层海洋热盐含量研究概述[J]. 海洋湖沼通报, 2017(5): 18-30.
|
[5] |
CHEN H P, SUN J Q, LIN W Q, et al. Comparison of CMIP6 and CMIP5 models in simulating climate extremes[J]. Science Bulletin, 2020, 65(17): 1415-1418. DOI: 10.1016/j.scib.2020.05.015.
pmid: 36747394
|
[6] |
王丹阳, 苏涵, 张春玲. Argo数据同化方法及其网格化产品研究进展[J]. 海洋湖沼通报, 2022, 44(3): 158-165. DOI: 10.13984/j.cnki.cn37-1141.2022.03.021.
|
[7] |
林益同, 赵春雨, 房一禾, 等. 东北初夏和盛夏降水时空变化及大气环流因子新特征分析[J]. 气象与环境学报, 2021, 37(5): 63-71. DOI: 10.3969/j.issn.1673-503X.2021.05.010.
|
[8] |
赵京华. 热带降水年际变化时空分布特征研究[D]. 青岛: 中国海洋大学, 2008.
|
[9] |
任湘湘, 夏冬冬. 印度海洋观测预报发展现状和思考[J]. 海洋预报, 2022, 39(3): 107-116. DOI: 10.11737/j.issn.1003-0239.2022.03.011.
|
[10] |
邹美常, 鄢波, 黄子建. 中国沿海11省驱动海洋经济发展的多元路径分析[J]. 海洋湖沼通报, 2022, 44(6): 157-163. DOI: 10.13984/j.cnki.cn37-1141.2022.06.020.
|
[11] |
KONAPALA G, MISHRA A K, WADA Y, et al. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation[J]. Nature Communications, 2020, 11(1): 3044. DOI: 10.1038/s41467-020-16757-w.
|
[12] |
CHANG X Y, WANG B B, YAN Y, et al. Characterizing effects of monsoons and climate teleconnections on precipitation in China using wavelet coherence and global coherence[J]. Climate Dynamics, 2019, 52(9): 5213-5228. DOI: 10.1007/s00382-018-4439-1.
|
[13] |
AN Q, HE H X, GAO J J, et al. Analysis of temporal-spatial variation characteristics of drought: a case study from Xinjiang, China[J]. Water, 2020, 12(3): 741. DOI: 10.3390/w12030741.
|
[14] |
CHEN H Q, YONG B, KIRSTETTER P E, et al. Global component analysis of errors in three satellite-only global precipitation estimates[J]. Hydrology and Earth System Sciences, 2021, 25(6): 3087-3104. DOI: 10.5194/hess-25-3087-2021.
|
[15] |
XIANG Y H, CHEN J, LI L, et al. Evaluation of eight global precipitation datasets in hydrological modeling[J]. Remote Sensing, 2021, 13(14): 2831. DOI: 10.3390/rs13142831.
|
[16] |
TRAN A P, TRAN B C, CAMPBELL S B, et al. Spatio-temporal characterization of drought variability in data-scarce regions using global precipitation data: a case study in Cauto River Basin, Cuba[J]. Scientific Reports, 2024, 14: 11659. DOI: 10.1038/s41598-024-61709-9.
pmid: 38778092
|
[17] |
LI X, ZHANG K, GU P R, et al. Changes in precipitation extremes in the Yangtze River Basin during 1960—2019 and the association with global warming, ENSO, and local effects[J]. The Science of the Total Environment, 2021, 760: 144244. DOI: 10.1016/j.scitotenv.2020.144244.
|
[18] |
QI Z S, CUI C F, JIANG Y T, et al. Changes in the spatial and temporal characteristics of China’s arid region in the background of ENSO[J]. Scientific Reports, 2022, 12(1): 17826. DOI: 10.1038/s41598-022-21712-4.
|
[19] |
王冠楠. 钟贻森. 周朦, 等. 运用CSEOF方法分析南海表面温度季节与年际变化[J]. 中国海洋大学学报:自然科学版, 2019(6):007-019.DOI:10.16441/j.cnki.hdxb.20180065.
|
[20] |
魏凤英. 现代气候统计诊断与预测技术[M]. 2版. 北京: 气象出版社, 2007.
|
[21] |
KIM K Y, NORTH G R. EOFs of harmonizable cyclostationary processes[J]. Journal of the Atmospheric Sciences, 1997, 54(19): 2416-2427. DOI: 10.1175/1520-0469(1997)054<2416:eohcp>2.0.co;2.
|
[22] |
KIM K Y, WU Q G. A comparison study of EOF techniques: analysis of nonstationary data with periodic statistics[J]. Journal of Climate, 1999, 12(1): 185-199. DOI: 10.1175/1520-0442-12.1.185.
|
[23] |
KIM K Y, CHUNG C. On the evolution of the annual cycle in the tropical Pacific[J]. Journal of Climate, 2001, 14(5): 991-994. DOI: 10.1175/1520-0442(2001)014<0991:oteota>2.0.co;2.
|
[24] |
徐建军, 朱乾根. ENSO及其年代际异常对全球及亚洲季风降水影响的数值研究[J]. 气象学报, 1999(3): 46-60.
|
[25] |
张春玲, 许建平. 基于Argo观测的太平洋温、盐度分布与变化(Ⅱ):盐度[J]. 海洋通报, 2015, 34(1):21-31.
|
[26] |
袁媛, 高辉, 贾小龙. 2014—2016年超强厄尔尼诺事件的气候影响[J]. 气象, 2016, 42(5): 532-539.
|
[27] |
高弋斌, 路春燕, 钟连秀, 等. 1951—2016年中国沿海地区气温与降水量的时空特征[J]. 森林与环境学报, 2019, 39(5):530-539.
|
[28] |
杨小欣, 吴晓芬, 刘增宏. 西太平洋暖池海域上层海洋热盐含量初步研究[J]. 中国海洋大学学报:自然科学版, 2016, 46(6):1-12.
|
[29] |
郝钰茜. 北半球夏季风降水年际协同变化的主要特征及与热带海温变化的联系[D]. 北京: 中国气象科学研究院, 2016.
|
[30] |
袁良, 何金海. 两类ENSO对我国华南地区冬季降水的不同影响[J]. 干旱气象, 2013, 31(1):24-31.
doi: 10. 11755 /j. issn. 1006 - 7639( 2013) - 01 - 0024
|
[31] |
ASHOK K, BEHERAS RAOS, et al. El Niño Modoki and its possible teleconnection[J]. Journal of Geophysical Research, 2007, 112:C11007. DOI:10.1029/2006JC003798.
|
[32] |
LI G, REN B H, YANG C Y, et al. Indices of El Niño and El Niño Modoki: an improved El Niño Modoki index[J]. Advances in Atmospheric Sciences, 2010, 27(5):1210-1220.
|