[1] |
孙国庆. 智慧水务关键技术研究及应用[J]. 水利信息化, 2018(1): 46-49. DOI: 10.19364/j.1674-9405.2018.01.010.
|
[2] |
蒋彬, 刘中亚, 陈垚, 等. 碳中和视角下污水处理现状与展望[J]. 工业水处理, 2022, 42(6): 51-58. DOI: 10.19965/j.cnki.iwt.2021-0905.
|
[3] |
周青龄, 周琳, 桂双林. MBR工艺在生活污水处理中同步脱氮除磷效果[J]. 能源研究与管理, 2019(3): 36-38. DOI: 10.16056/j.1005-7676.2019.03.010.
|
[4] |
李佟, 李军. 基于BP神经网络与马尔可夫链的污水处理厂脱氮效果模拟预测[J]. 环境科学学报, 2016, 36(2): 576-581. DOI: 10.13671/j.hjkxxb.2015.0559.
|
[5] |
林佳敏, 陈金良, 林晶晶, 等. BP神经网络和ARIMA模型对污水处理厂出水总氮浓度的模拟预测[J]. 环境工程技术学报, 2019, 9(5): 573-578. DOI: 10.12153/j.issn.1674-991X.2019.03.261.
|
[6] |
夏文泽, 冯骁, 王喆, 等. 基于新型联合循环神经网络(RNN)模型的出水总氮预测[J]. 净水技术, 2021, 40(8): 107-113. DOI: 10.15890/j.cnki.jsjs.2021.08.015.
|
[7] |
崔玉波, 张万筠, 孙红杰, 等. 污泥处理湿地系统渗滤液中总氮和氨氮的预测模型[J]. 中国给水排水, 2015, 31(17): 72-75. DOI: 10.19853/j.zgjsps.1000-4602.2015.17.017.
|
[8] |
黄学平, 吴留兴, 辛攀, 等. 基于3种机器学习模型的污水处理厂出水总氮预测分析[J]. 能源研究与管理, 2023, 15(2): 100-105. DOI: 10.16056/j.2096-7705.2023.02.015.
|
[9] |
ZHAO Z H, WANG Z H, YUAN J L, et al. Development of a novel feedforward neural network model based on controllable parameters for predicting effluent total nitrogen[J]. Engineering, 2021, 7(2): 195-202. DOI: 10.1016/j.eng.2020.07.027.
|
[10] |
HANSEN L D, STOKHOLM-BJERREGAARD M, DURDEVIC P. Modeling phosphorous dynamics in a wastewater treatment process using Bayesian optimized LSTM[J]. Computers & Chemical Engineering, 2022, 160: 107738. DOI: 10.1016/j.compchemeng.2022.107738.
|
[11] |
PISA I, SANTIN I, MORELL A, et al. LSTM-based wastewater treatment plants operation strategies for effluent quality improvement[J]. IEEE Access, 2019, 7: 159773-159786. DOI: 10.1109/access.2019.2950852.
|
[12] |
国家环境保护总局科技标准司. 城镇污水处理厂污染物排放标准: GB 18918—2002[S]. 北京: 中国标准出版社, 2002.
|
[13] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. DOI: 10.1162/neco.1997.9.8.1735.
pmid: 9377276
|
[14] |
SHAMS M Y, ELSHEWEY A M, EL-KENAWY E S M, et al. Water quality prediction using machine learning models based on grid search method[J]. Multimedia Tools and Applications, 2024, 83(12): 35307-35334. DOI: 10.1007/s11042-023-16737-4.
|
[15] |
CHEN H L, CHANG X F. Photovoltaic power prediction of LSTM model based on Pearson feature selection[J]. Energy Reports, 2021, 7: 1047-1054. DOI: 10.1016/j.egyr.2021.09.167.
|
[16] |
李如仁, 孙加瑶. 融合SBAS-InSAR与GS-LSTM的尾矿库沉降监测与预测[J]. 金属矿山, 2023(1): 102-109. DOI: 10.19614/j.cnki.jsks.202301011.
|
[17] |
ZHANG Y T, LI C L, DUAN H P, et al. Deep learning based data-driven model for detecting time-delay water quality indicators of wastewater treatment plant influent[J]. Chemical Engineering Journal, 2023, 467: 143483. DOI: 10.1016/j.cej.2023.143483.
|
[18] |
CHEN J C, CHANG N B, SHIEH W K. Assessing wastewater reclamation potential by neural network model[J]. Engineering Applications of Artificial Intelligence, 2003, 16(2): 149-157. DOI: 10.1016/s0952-1976(03)00056-3.
|
[19] |
FARAMARZ B, MOHAMAD-JAVAD M, MILAD B, et al. Comparative study on total nitrogen prediction in wastewater treatment plant and effect of various feature selection methods on machine learning algorithms performance[J]. Journal of Water Process Engineering, 2021, 41:102033.
|
[20] |
CHO K H, KIM J O, KANG S, et al. Achieving enhanced nitrification in communities of nitrifying bacteria in full-scale wastewater treatment plants via optimal temperature and pH[J]. Separation and Purification Technology, 2014, 132: 697-703. DOI: 10.1016/j.seppur.2014.06.027.
|
[21] |
汤琪. 生物脱氮除磷新技术[J]. 重庆大学学报(自然科学版), 2006, 29(9): 138-143.
|
[22] |
SHRESTHA N. Detecting multicollinearity in regression analysis[J]. American Journal of Applied Mathematics and Statistics, 2020, 8(2): 39-42. DOI: 10.12691/ajams-8-2-1.
|
[23] |
KONTOPOULOU V I, PANAGOPOULOS A D, KAKKOS I, et al. A review of ARIMA vs. machine learning approaches for time series forecasting in data driven networks[J]. Future Internet, 2023, 15(8): 255. DOI: 10.3390/fi15080255.
|