Shandong Science ›› 2022, Vol. 35 ›› Issue (2): 60-69.doi: 10.3976/j.issn.1002-4026.2022.02.008
• New Materials • Previous Articles Next Articles
WANG Ji-Jun,LÜ Bing-Xi,LIU Li-Bin(
)
Received:2021-09-30
Published:2022-04-20
Online:2022-04-07
Contact:
Li-Bin LIU
E-mail:lbliu@qlu.edu.cn
CLC Number:
WANG Ji-Jun,LÜ Bing-Xi,LIU Li-Bin. Antifreezing organic hydrogel electrolyte with high mechanical strength and ionic conductivity[J].Shandong Science, 2022, 35(2): 60-69.
| [1] |
WU J L, JIANG K, LI G H, et al. Molecularly coupled two-dimensional titanium oxide and carbide sheets for wearable and high-rate quasi-solid-state rechargeable batteries[J]. Advanced Functional Materials, 2019, 29(30): 1901576. DOI: 10.1002/adfm.201901576.
doi: 10.1002/adfm.201901576 |
| [2] |
PAN Z H, YANG J, ZHANG Q C, et al. All-solid-state fiber supercapacitors with ultrahigh volumetric energy density and outstanding flexibility[J]. Advanced Energy Materials, 2019, 9(9): 1802753. DOI: 10.1002/aenm.201802753.
doi: 10.1002/aenm.201802753 |
| [3] |
MA Q, ZENG X X, YUE J P, et al. Viscoelastic and nonflammable interface design-enabled dendrite-free and safe solid lithium metal batteries[J]. Advanced Energy Materials, 2019, 9(13): 1803854. DOI: 10.1002/aenm.201803854.
doi: 10.1002/aenm.201803854 |
| [4] |
HUO H Y, CHEN Y, LUO J, et al. Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries[J]. Advanced Energy Materials, 2019, 9(17): 1804004. DOI: 10.1002/aenm.201804004.
doi: 10.1002/aenm.201804004 |
| [5] |
ZHOU Y, WAN C J, YANG Y S, et al. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics[J]. Advanced Functional Materials, 2019, 29(1): 1806220. DOI: 10.1002/adfm.201806220.
doi: 10.1002/adfm.201806220 |
| [6] |
YU Z J, JIAO S Q, LI S J, et al. Flexible stable solid-state Al-ion batteries[J]. Advanced Functional Materials, 2019, 29(1): 1806799. DOI: 10.1002/adfm.201806799.
doi: 10.1002/adfm.201806799 |
| [7] |
ZHOU Q, MA J, DONG S M, et al. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(50): e1902029. DOI: 10.1002/adma.201902029.
doi: 10.1002/adma.201902029 |
| [8] |
FAN L, WEI S Y, LI S Y, et al. Recent progress of the solid-state electrolytes for high-energy metal-based batteries[J]. Advanced Energy Materials, 2018, 8(11): 1702657. DOI: 10.1002/aenm.201702657.
doi: 10.1002/aenm.201702657 |
| [9] |
D'ANGELO A J, PANZER M J. Decoupling the ionic conductivity and elastic modulus of gel electrolytes: fully zwitterionic copolymer scaffolds in lithium salt/ionic liquid solutions[J]. Advanced Energy Materials, 2018, 8(26): 1801646. DOI: 10.1002/aenm.201801646.
doi: 10.1002/aenm.201801646 |
| [10] |
CHA H, KIM J, LEE Y, et al. Issues and challenges facing flexible lithium-ion batteries for practical application[J]. Small (Weinheim an Der Bergstrasse, Germany), 2018, 14(43): e1702989. DOI: 10.1002/smll.201702989.
doi: 10.1002/smll.201702989 |
| [11] |
CHEN D, LOU Z, JIANG K, et al. Device configurations and future prospects of flexible/stretchable lithium-ion batteries[J]. Advanced Functional Materials, 2018, 28(51): 1805596. DOI: 10.1002/adfm.201805596.
doi: 10.1002/adfm.201805596 |
| [12] |
FAN W, LI N W, ZHANG X L, et al. A dual-salt gel polymer electrolyte with 3D cross-linked polymer network for dendrite-free lithium metal batteries[J]. Advanced Science, 2018, 5(9): 1800559. DOI: 10.1002/advs.201800559.
doi: 10.1002/advs.201800559 |
| [13] |
ZHAO Y S, ALSAID Y, YAO B W, et al. Wood-inspired morphologically tunable aligned hydrogel for high-performance flexible all-solid-state supercapacitors[J]. Advanced Functional Materials, 2020, 30(10): 1909133. DOI: 10.1002/adfm.201909133.
doi: 10.1002/adfm.201909133 |
| [14] |
QIU J L, LIU X Y, CHEN R S, et al. Enabling stable cycling of 4.2 V high-voltage all-solid-state batteries with PEO-based solid electrolyte[J]. Advanced Functional Materials, 2020, 30(22): 1909392. DOI: 10.1002/adfm.201909392.
doi: 10.1002/adfm.201909392 |
| [15] |
SONG Z S, DING J, LIU B, et al. A rechargeable Zn-air battery with high energy efficiency and long life enabled by a highly water-retentive gel electrolyte with reaction modifier[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(22): e1908127. DOI: 10.1002/adma.201908127.
doi: 10.1002/adma.201908127 |
| [16] |
YE Y H, ZHANG Y F, CHEN Y, et al. Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors[J]. Advanced Functional Materials, 2020, 30(35): 2003430. DOI: 10.1002/adfm.202003430.
doi: 10.1002/adfm.202003430 |
| [17] |
LIU X, ZHANG Q, GAO G H. DNA-inspired anti-freezing wet-adhesion and tough hydrogel for sweaty skin sensor[J]. Chemical Engineering Journal, 2020, 394: 124898. DOI: 10.1016/j.cej.2020.124898.
doi: 10.1016/j.cej.2020.124898 |
| [18] |
LIU X, ZHANG Q, GAO G H. Solvent-resistant and nonswellable hydrogel conductor toward mechanical perception in diverse liquid media[J]. ACS Nano, 2020, 14(10): 13709-13717. DOI: 10.1021/acsnano.0c05932.
doi: 10.1021/acsnano.0c05932 |
| [19] |
KIM C C, LEE H H, OH K H, et al. Highly stretchable, transparent ionic touch panel[J]. Science, 2016, 353(6300): 682-687. DOI: 10.1126/science.aaf8810.
doi: 10.1126/science.aaf8810 |
| [20] |
WANG Y H, LV C, JI G C, et al. An all-in-one supercapacitor with high stretchability via a facile strategy[J]. Journal of Materials Chemistry A, 2020, 8(17): 8255-8261. DOI: 10.1039/d0ta00757a.
doi: 10.1039/d0ta00757a |
| [21] |
CUI C Y, FAN C C, WU Y H, et al. Water-triggered hyperbranched polymer universal adhesives: From strong underwater adhesion to rapid sealing hemostasis[J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(49): e1905761. DOI: 10.1002/adma.201905761.
doi: 10.1002/adma.201905761 |
| [22] |
WANG Y K, CHEN F, LIU Z X, et al. A highly elastic and reversibly stretchable all-polymer supercapacitor[J]. Angewandte Chemie (International Ed in English), 2019, 58(44): 15707-15711. DOI: 10.1002/anie.201908985.
doi: 10.1002/anie.201908985 |
| [23] |
LIU H Y, WANG X, CAO Y X, et al. Freezing-tolerant, highly sensitive strain and pressure sensors assembled from ionic conductive hydrogels with dynamic cross-links[J]. ACS Applied Materials & Interfaces, 2020, 12(22): 25334-25344. DOI: 10.1021/acsami.0c06067.
doi: 10.1021/acsami.0c06067 |
| [24] |
XU J J, JING R N, REN X Y, et al. Fish-inspired anti-icing hydrogel sensors with low-temperature adhesion and toughness[J]. Journal of Materials Chemistry A, 2020, 8(18): 9373-9381. DOI: 10.1039/d0ta02370a.
doi: 10.1039/d0ta02370a |
| [25] |
BAO D Q, WEN Z, SHI J H, et al. An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature[J]. Journal of Materials Chemistry A, 2020, 8(27): 13787-13794. DOI: 10.1039/d0ta03215h.
doi: 10.1039/d0ta03215h |
| [26] |
ZHAO X, CHEN F, LI Y H, et al. Bioinspired ultra-stretchable and anti-freezing conductive hydrogel fibers with ordered and reversible polymer chain alignment[J]. Nature Communications, 2018, 9: 3579. DOI: 10.1038/s41467-018-05904-z.
doi: 10.1038/s41467-018-05904-z |
| [27] |
MO F N, LIANG G J, WANG D H, et al. Biomimetic organohydrogel electrolytes for high-environmental adaptive energy storage devices[J]. EcoMat, 2019, 1(1): e12008. DOI: 10.1002/eom2.12008.
doi: 10.1002/eom2.12008 |
| [28] |
GUAN L, YAN S, LIU X, et al. Wearable strain sensors based on casein-driven tough, adhesive and anti-freezing hydrogels for monitoring human-motion[J]. Journal of Materials Chemistry B, 2019, 7(34): 5230-5236. DOI: 10.1039/c9tb01340g.
doi: 10.1039/c9tb01340g |
| [29] |
YANG J B, XU Z, WANG J J, et al. Antifreezing zwitterionic hydrogel electrolyte with high conductivity of 12.6 mS/cm at -40 ℃ through hydrated lithium ion hopping migration[J]. Advanced Functional Materials, 2021, 31(18): 2009438. DOI: 10.1002/adfm.202009438.
doi: 10.1002/adfm.202009438 |
| [30] |
GERMAN B, DAMODARAN S, KINSELLA J E. Thermal dissociation and association behavior of soy proteins[J]. Journal of Agricultural and Food Chemistry, 1982, 30(5): 807-811. DOI: 10.1021/jf00113a002.
doi: 10.1021/jf00113a002 |
| [31] |
UTSUMI S, KINSELLA J E. Structure-function relationships in food proteins: subunit interactions in heat-induced gelation of 7S, 11S, and soy isolate proteins[J]. Journal of Agricultural and Food Chemistry, 1985, 33(2): 297-303. DOI: 10.1021/jf00062a035.
doi: 10.1021/jf00062a035 |
| [32] |
LI X, LI Y, HUA Y, et al. Effect of concentration, ionic strength and freeze-drying on the heat-induced aggregation of soy proteins[J]. Food Chemistry, 2007, 104(4): 1410-1417. DOI: 10.1016/j.foodchem.2007.02.003.
doi: 10.1016/j.foodchem.2007.02.003 |
| [33] |
NAN J Y, ZHANG G T, ZHU T Y, et al. A highly elastic and fatigue-resistant naturalprotein-reinforced hydrogel electrolyte for reversible-compressible quasi-solid-state supercapacitors[J]. Advanced Science, 2020, 7(14): 2000587. DOI: 10.1002/advs.202000587.
doi: 10.1002/advs.202000587 |
| [1] | LI Yiwei, SONG Jin, LI Yunzhou, WANG Juncheng. A novel voltammetric pH sensor for in situ monitoring of seawater microbial fuel cell [J]. Shandong Science, 2025, 38(3): 72-83. |
| [2] | JIANG Xiaodong, WANG Leilei, SUN Peng, YANG Guang, GENG Junqi, WANG Jiawen, HUANG Sheng, QU Shuai, WANG Chen, SHANG Ying. Fault detection of an on-load tap changer based on generative adversarial network [J]. Shandong Science, 2023, 36(6): 68-73. |
| [3] | DONG Guanlei, JIANG Xiaodong, SUN Peng, YANG Guang, GENG Junqi, WANG Jiawen, QU Shuai, HUANG Sheng, WANG Chen, SHANG Ying. On-load transformer fault detection based on distributed optical fiber sensing system [J]. Shandong Science, 2023, 36(5): 52-59. |
| [4] | ZHANG Hua, HU Binxin, ZHU Feng, WANG Jiqiang, SONG Guangdong. Optical fiber microseismic monitoring system and its application research in Wuyang Coal Mine [J]. Shandong Science, 2023, 36(5): 60-66. |
| [5] | TAI Peng, SONG Miaomiao, WANG Bo, CHEN Shizhe, FU Xiao, HU Wei, GAO Saiyu, CHENG Kaiyu, ZHENG Shanshan, JIAO Zixuan, WANG Longfei. Wave sensor fault diagnosis method based on t-SNE reduction and KNN algorithm [J]. Shandong Science, 2023, 36(4): 1-9. |
| [6] | QIU Shi, YANG Maoshui, SUN Yan, REN Yan, WU Juxiu. Research on measurement error variation of a weighing precipitation sensor [J]. Shandong Science, 2023, 36(1): 124-130. |
| [7] | MA Long, ZHANG Fa-xiang, LIU Xiao-hui, WANG Ying-ying, WANG Chang, LI Hui. Design of flow-velocity sensor based on double fiber Bragg gratings [J]. Shandong Science, 2022, 35(6): 109-115. |
| [8] | ZHU Si-rong, BI Chun-yuan, DU Yi, ZHANG Jin-ling, GAO Guang-heng, ZHANG Li-qun, ZHAO Xiao-hua, YANG Yan. An analysis method for suppressing interference from the reversible inhibitors of amperometric enzyme electrode biosensors [J]. Shandong Science, 2021, 34(4): 87-94. |
| [9] | YUAN Da, FENG Xian-dong, ZHANG Yun-yan, WU Bing-wei. Development of marine in situ dissolved oxygen sensor based on fluorescence quenching and its quantitative calibration algorithm [J]. Shandong Science, 2021, 34(2): 1-10. |
| [10] | LI Rong, ZHENG Wen. Characteristics of the analog of electromagnetically induced transparency in case of a polarization-insensitive metamaterial [J]. Shandong Science, 2021, 34(1): 28-34. |
| [11] | HE Ya-nan, ZHU Hong-hai. Libmodbus-based bus protocol design for navigational sea surface temperature sensors [J]. Shandong Science, 2020, 33(6): 1-7. |
| [12] | SUN Hui-nan, GAO Guang-heng , LIU Qing-ai , MA Yao-hong, LI Jing , SHI Jian-guo. Application of blood lactic acid biosensor in the diagnosis and treatment of COVID-19 [J]. Shandong Science, 2020, 33(3): 1-6. |
| [13] | YU Peng-feia, WANG Xiao-shana, YU Zi-qiang, WEI Yu-bin, ZHANG Ting-ting, HU Jie, LIU Tong-yu, WANG Zhao-wei. Research on laser online detection technology application of precision fermentation of CO2 tail gas [J]. Shandong Science, 2020, 33(1): 68-74. |
| [14] | LIU Feng-qing, MA Hai-kuan, WU Ning, MA Ran, CAO Xuan. Application of wireless sensor network based on ZigBee in the monitoring of the marine ecological environment [J]. Shandong Science, 2019, 32(6): 1-8. |
| [15] | DU Yi, ZHANG Jin-ling, ZHU Si-rong, ZHANG Li-qun, ZHAO Xiao-hua, SHI Jian-guo, BI Chun-yuan. Determination of milk lactose content using composite enzyme membrane biosensor based on difference method [J]. Shandong Science, 2019, 32(6): 43-48. |
|
||
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits third parties to freely share (i.e., copy and redistribute the material in any medium or format) and adapt (i.e., remix, transform, or build upon the material) the articles published in this journal, provided that appropriate credit is given, a link to the license is provided, and any changes made are indicated. The material may not be used for commercial purposes. For details of the CC BY-NC 4.0 license, please visit: https://creativecommons.org/licenses/by-nc/4.0