[1] |
XIAO L L, LI J J, LICHTFOUSE E, et al. Augmentation of chloramphenicol degradation by Geobacter-based biocatalysis and electric field[J]. Journal of Hazardous Materials, 2021, 410: 124977. DOI: 10.1016/j.jhazmat.2020.124977.
|
[2] |
BHEMBE Y A, LUKHELE L P, HLEKELELE L, et al. Photocatalytic degradation of nevirapine with a heterostructure of few-layer black phosphorus coupled with niobium (V) oxide nanoflowers (FL-BP@Nb2O5)[J]. Chemosphere, 2020, 261: 128159. DOI: 10.1016/j.chemosphere.2020.128159.
|
[3] |
DIANEY G S, KAUR H, DOSANJH H S, et al. Sunlight powered degradation of pentoxifylline Cs0.5Li0.5FeO2 as a green reusable photocatalyst: Mechanism, kinetics and toxicity studies[J]. Journal of Hazardous Materials, 2021, 416: 125762. DOI: 10.1016/j.jhazmat.2021.125762.
|
[4] |
VAN LE Q, NGUYEN V H, NGUYEN T D, et al. Light-driven reduction of carbon dioxide: Altering the reaction pathways and designing photocatalysts toward value-added and renewable fuels[J]. Chemical Engineering Science, 2021, 237: 116547. DOI: 10.1016/j.ces.2021.116547.
|
[5] |
STREETER I, LEVENTIS H C, WILDGOOSE G G, et al. A sensitive reagentless pH probe with a Ca. 120mV/pH unit response[J]. Journal of Solid State Electrochemistry, 2004, 8(10): 718-721. DOI: 10.1007/s10008-004-0536-7.
|
[6] |
KAKIUCHI T. Salt bridge in electroanalytical chemistry: Past, present, and future[J]. Journal of Solid State Electrochemistry, 2011, 15(7): 1661-1671. DOI: 10.1007/s10008-011-1373-0.
|
[7] |
SKOOG D A, WEST D M, HOLLER J, et al. Fundamentals of Analytical Chemistry[M]. New York: Holt Press, 2014.
|
[8] |
STRED'ANSÝK M, PIZZARIELLO A, STRED'ANSKÁ S, et al. Amperometric pH-sensing biosensors for urea, penicillin, and oxalacetate[J]. Analytica Chimica Acta, 2000, 415(1/2): 151-157. DOI: 10.1016/S0003-2670(00)00869-2.
|
[9] |
DONG Q C, HUANG Y K, SONG D H, et al. Dual functional rhodium oxide nanocorals enabled sensor for both non-enzymatic glucose and solid-state pH sensing[J]. Biosensors & Bioelectronics, 2018, 112: 136-142. DOI: 10.1016/j.bios.2018.04.021.
|
[10] |
WEBSTER J G, EREN H. Measurement, instrumentation, and sensors handbook: spatial, mechanical, thermal, and radiation measurement[M]. 2nd ed. Boca Raton: CRC Press, 2014.
|
[11] |
LU M, COMPTON R G. Voltammetric pH sensor based on an edge plane pyrolytic graphite electrode[J]. Analyst, 2014, 139(10): 2397-2403. DOI: 10.1039/C4AN00147H.
|
[12] |
LU M, COMPTON R G. Voltammetric pH sensing using carbon electrodes: Glassy carbon behaves similarly to EPPG[J]. Analyst, 2014, 139(18): 4599-4605. DOI: 10.1039/C4AN00866A.
|
[13] |
MICHALAK M, KUREL M, JEDRASZKO J, et al. Voltammetric pH nanosensor[J]. Analytical Chemistry, 2015, 87(23): 11641-11645. DOI: 10.1021/acs.analchem.5b03482.
|
[14] |
JACQ J. Schema carre etablissement et discussion de l’equation generale de la courbe intensite-potentiel en regime stationnaire et diffusion convective[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1971, 29(1): 149-180. DOI: 10.1016/S0022-0728(71)80080-3.
|
[15] |
BATCHELOR-MCAULEY C, KOZUB B R, MENSHYKAU D, et al. Voltammetric responses of surface-bound and solution-phase anthraquinone moieties in the presence of unbuffered aqueous media[J]. The Journal of Physical Chemistry C, 2011, 115(3): 714-718. DOI: 10.1021/jp1096585.
|
[16] |
GAO X M, DAI C C, XU Z J, et al. An electrochemical method for monitoring the acidity of water for fuel cell and environmental applications[J]. Energy Technology, 2018, 6(1): 94-99. DOI: 10.1002/ente.201700617.
|
[17] |
ZUAZNABAR-GARDONA J C, FRAGOSO A. A wide-range solid state potentiometric pH sensor based on poly-dopamine coated carbon nano-onion electrodes[J]. Sensors and Actuators B: Chemical, 2018, 273: 664-671. DOI: 10.1016/j.snb.2018.06.103.
|
[18] |
CASIMERO C, MCCONVILLE A, FEARON J J, et al. Sensor systems for bacterial reactors: A new flavin-phenol composite film for the in situ voltammetric measurement of pH[J]. Analytica Chimica Acta, 2018, 1027: 1-8. DOI: 10.1016/j.aca.2018.04.053.
|
[19] |
READ T L, COBB S J, MACPHERSON J V. An sp2 patterned boron doped diamond electrode for the simultaneous detection of dissolved oxygen and pH[J]. ACS Sensors, 2019, 4(3): 756-763. DOI: 10.1021/acssensors.9b00137.
|
[20] |
THAM G X, FISHER A C, WEBSTER R D. A vitamin-based voltammetric pH sensor that functions in buffered and unbuffered media[J]. Sensors and Actuators B: Chemical, 2019, 283: 495-503. DOI: 10.1016/j.snb.2018.12.036.
|
[21] |
LI Y W, ZHOU J, SONG J, et al. Chemical nature of electrochemical activation of carbon electrodes[J]. Biosensors and Bioelectronics, 2019, 144: 111534. DOI: 10.1016/j.bios.2019.111534.
|
[22] |
LI Y W, MA Y H, LICHTFOUSE E, et al. In situ electrochemical synthesis of graphene-poly(arginine) composite for p-nitrophenol monitoring[J]. Journal of Hazardous Materials, 2022, 421: 126718. DOI: 10.1016/j.jhazmat.2021.126718.
|
[23] |
ZHOU M, WANG Y L, ZHAI Y M, et al. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films[J]. Chemistry, 2009, 15(25): 6116-6120. DOI: 10.1002/chem.200900596.
|
[24] |
CINTI S, ARDUINI F. Graphene-based screen-printed electrochemical (bio)sensors and their applications: Efforts and criticisms[J]. Biosensors and Bioelectronics, 2017, 89: 107-122. DOI: 10.1016/j.bios.2016.07.005.
|
[25] |
LEE H, CHOI T K, LEE Y B, et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy[J]. Nature Nanotechnology, 2016, 11(6): 566-572. DOI: 10.1038/nnano.2016.38.
|
[26] |
SHEN A L, ZOU Y Q, WANG Q, et al. Oxygen reduction reaction in a droplet on graphite: Direct evidence that the edge is more active than the basal plane[J]. Angewandte Chemie (International Ed), 2014, 53(40): 10804-10808. DOI: 10.1002/anie.201406695.
|
[27] |
ENG A Y S, AMBROSI A, CHUA C K, et al. Unusual inherent electrochemistry of graphene oxides prepared using permanganate oxidants[J]. Chemistry, 2013, 19(38): 12673-12683. DOI: 10.1002/chem.201301889.
|
[28] |
DAI C C, SONG P, WADHAWAN J D, et al. Screen printed alizarin-based carbon electrodes: Monitoring pH in unbuffered media[J]. Electroanalysis, 2015, 27(4): 917-923. DOI: 10.1002/elan.201400704.
|
[29] |
SISODIA N, MIRANDA M, MCGUINNESS K L, et al. Intra- and inter-molecular sulf- hydryl hydrogen bonding: Facilitating proton transfer events for determination of pH in sea water[J]. Electroanalysis, 2021, 33(3): 559-562. DOI: 10.1002/elan.202060332.
|
[30] |
CHU W B, TAN S J, ZHENG Q J, et al. Ultrafast charge transfer coupled to quantum proton motion at molecule/metal oxide interface[J]. Science Advances, 2022, 8(24): eabo2675. DOI: 10.1126/sciadv.abo2675.
|
[31] |
LOGAN B E. Microbial fuel cells[M]. New Jersey: Wiley-Blackwell Press, 2008.
|
[32] |
LIU D, HUANG W C, CHANG Q H, et al. The high enrichment of Geobacter by TiN nanoarray anode catalyst for efficient microbial fuel cells[J]. Journal of Materials Chemistry A, 2021, 9(12): 7726-7735. DOI: 10.1039/d0ta11788a.
|
[33] |
FENG M, MENG L, ZHANG Z, et al. Hierarchical modulation of extracellular electron transfer processes in microbial fuel cell anodes for enhanced power output through improved Geobacter adhesion[J]. Electrochimica Acta, 2024, 487: 144165. DOI: 10.1016/j.electacta.2024.144165.
|