Shandong Science ›› 2021, Vol. 34 ›› Issue (6): 51-61.doi: 10.3976/j.issn.1002-4026.2021.06.007
• Pharmacology and Toxicology • Previous Articles Next Articles
LIU Yuan1(
),CHEN Jie1,SUN Hui1,XU Yuan-nan2,MA Zhi-qiang1,LIU Xiang-fang1,LIU Meng-xing1,LIU Xing1,*(
)
Received:2020-10-23
Published:2021-12-20
Online:2021-12-13
Contact:
LIU Xing
E-mail:254914514@qq.com
CLC Number:
LIU Yuan, CHEN Jie, SUN Hui, XU Yuan-nan, MA Zhi-qiang, LIU Xiang-fang, LIU Meng-xing, LIU Xing. Study on the mechanism of Ranunculi Ternati Radix in the treatment of tuberculosis based on network pharmacology[J].Shandong Science, 2021, 34(6): 51-61.
Table 1
Ranunculi Ternati Radix compound information characteristics"
| 编号 | 活性成分 | OB/% | DL |
|---|---|---|---|
| MOL000242 | 7-O-methyleridictyol(7-O-甲基圣草酚) | 56.56 | 0.27 |
| MOL011328 | stigmasta-4,6,8(豆甾-4,6,8) | 48.02 | 0.77 |
| MOL011330 | vittadinoside_qt(维太菊苷) | 43.83 | 0.76 |
| MOL000449 | stigmasterol(豆甾醇) | 43.83 | 0.76 |
| MOL006772 | poriferasterolmonoglucoside_qt(豆甾醇葡萄糖苷) | 43.83 | 0.76 |
| MOL011319 | truflex OBP(邻苯二甲酸正丁异辛酯) | 43.74 | 0.24 |
| MOL001494 | mandenol(亚油酸乙酯) | 42.00 | 0.19 |
| MOL001973 | sitosteryl acetate(谷甾醇乙酸酯) | 40.39 | 0.85 |
| MOL000593 | cholesterol(胆固醇) | 37.87 | 0.68 |
| MOL005438 | cmpesterol(菜油甾醇) | 37.58 | 0.71 |
| MOL000358 | bate-sitosterol(β-谷甾醇) | 36.91 | 0.75 |
| MOL011312 | (3R,8S,9S,10S,13R,17R)-17-((2S,5R)-5-ethyl-6-methylheptan-2-yl)-3,10,13-trimethyl- 2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenthrene | 30.10 | 0.74 |
Table 2
Potential targets of Ranunculi Ternati Radix"
| 序号 | 靶点 | Uniprot ID | 序号 | 靶点 | Uniprot ID | 序号 | 靶点 | Uniprot ID |
|---|---|---|---|---|---|---|---|---|
| 1 | ADH1C | P00326 | 15 | CHRM3 | P20309 | 29 | OPRM1 | P35372 |
| 2 | ADRA1A | P35348 | 16 | CHRM4 | P08173 | 30 | PGR | P06401 |
| 3 | ADRA1B | P35368 | 17 | CHRNA2 | Q15822 | 31 | PLAU | P00749 |
| 4 | ADRA2A | P08913 | 18 | CTRB1 | P17538 | 32 | PON1 | P27169 |
| 5 | ADRB1 | P08588 | 19 | GABRA1 | P14867 | 33 | PRKCA | P17612 |
| 6 | ADRB2 | P07550 | 20 | JUN | P05412 | 34 | PTGS1 | P23219 |
| 7 | AKR1B1 | P15121 | 21 | KCNH2 | Q12809 | 35 | PTGS2 | P35354 |
| 8 | BAX | Q07812 | 22 | LTA4H | P09960 | 36 | RXRA | P19793 |
| 9 | BCL2 | P10415 | 23 | MAOA | P21397 | 37 | SCN5A | Q14524 |
| 10 | CASP3 | P42574 | 24 | MAP2 | P11137 | 38 | SLC6A2 | P23975 |
| 11 | CASP8 | Q14790 | 25 | NCOA1 | Q15788 | 39 | SLC6A3 | Q01959 |
| 12 | CASP9 | P55211 | 26 | NCOA2 | Q15596 | 40 | SLC6A4 | P31645 |
| 13 | CHRM1 | P11229 | 27 | NR3C2 | P08235 | |||
| 14 | CHRM2 | P08172 | 28 | MAOB | P27338 |
Table 3
Analysis of overlapping targets between Ranunculi Ternati Radix and TB"
| 关键靶点 | 全称 | Uniprot ID | 度值 |
|---|---|---|---|
| CASP3 | Caspase-3 | P42574 | 5 |
| CASP8 | Caspase-8 | Q14790 | 5 |
| CASP9 | Caspase-9 | P55211 | 5 |
| BCL2 | Apoptosis regulator Bcl-2 | P10415 | 4 |
| BAX | Apoptosis regulator BAX | Q07812 | 5 |
| JUN | Transcription factor AP-1 | P05412 | 4 |
Table 4
Results of KEGG enrichment analysis"
| 信号通路 | 基因数 | 靶点 | P值 |
|---|---|---|---|
| 乙肝 | 6 | JUN、BAX、BCL2、CASP3、CASP8、CASP9 | 2.57×10-7 |
| 凋亡 | 6 | JUN、BAX、BCL2、CASP3、CASP8、CASP9 | 4.30×10-7 |
| 癌症通路 | 6 | JUN、BAX、BCL2、CASP3、CASP8、CASP9 | 3.57×10-5 |
| EB病毒感染 | 6 | JUN、BAX、BCL2、CASP3、CASP8、CASP9 | 3.96×10-5 |
| 麻疹 | 6 | JUN、BAX、BCL2、CASP3、CASP8、CASP9 | 4.18×10-5 |
| TB | 5 | BAX、BCL2、CASP3、CASP8、CASP9 | 4.76×10-5 |
| HIV-1病毒感染 | 6 | JUN、BAX、BCL2、CASP3、CASP8、CASP9 | 5.13×10-5 |
| p53信号通路 | 5 | BAX、BCL2、CASP3、CASP8、CASP9 | 6.79×10-5 |
| 单纯疱疹病毒感染 | 5 | BAX、BCL2、CASP3、CASP8、CASP9 | 2.63×10-2 |
| 沙门氏菌感染 | 5 | JUN、BAX、BCL2、CASP3、CASP8 | 2.94×10-2 |
Table 5
The interaction of active ingredients of Ranunculi Ternati Radix with the 5 targets (affinity energy)"
| 活性成分 | 靶点 | ||||
|---|---|---|---|---|---|
| CASP3 | CASP8 | CASP9 | BCL2 | BAX | |
| 7-O-Methyleridictyol | -7.5 | -6.4 | -6.3 | -6.7 | -7.0 |
| Stigmasta-4,6,8 | -7.6 | -6.8 | -8.4 | -7.8 | -9.0 |
| vittadinoside_qt | -7.5 | -7.1 | -7.9 | -7.0 | -8.5 |
| Stigmasterol | -7.7 | -7.6 | -8.5 | -7.2 | -8.7 |
| poriferasterol monoglucoside_qt | -8.5 | -7.2 | -7.9 | -8.2 | -8.0 |
| Truflex OBP | -5.3 | -4.8 | -4.5 | -5.4 | -5.8 |
| Mandenol | -5.1 | -4.4 | -4.4 | -5.6 | -5.0 |
| Sitosteryl acetate | -8.2 | -6.8 | -8.2 | -7.6 | -8.2 |
| CLR | -7.3 | -6.8 | -8.0 | -6.9 | -8.5 |
| cmpesterol | -6.9 | -6.9 | -8.4 | -7.6 | -8.8 |
| bate-sitosterol | -6.9 | -7.3 | -8.4 | -7.7 | -8.3 |
| (3R,8S,9S,10S,13R,17R)-17-((2S,5R)-5-ethyl-6- methylheptan-2-yl)-3,10,13-trimethyl-2,3,4,7,8,9,10, 11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenthrene | -7.1 | -6.2 | -7.1 | -7.8 | -8.2 |
| [1] | 国家药典委员会. 中华人民共和国药典2015年版一部[M]. 北京: 中国医药科技出版社, 2015: 319-320. |
| Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China 2015 Volume 1[M]. Beijing: China Medical Science and Technology Press, 2015: 319-320. | |
| [2] |
杨堃, 邓可众, 李汉兴, 等. 猫爪草体外抗结核作用研究[J]. 安徽农业科学, 2015, 43(19):76-77. DOI: 10.13989/j.cnki.0517-6611.2015.19.029.
doi: 10.13989/j.cnki.0517-6611.2015.19.029 |
|
YANG K, DENG K Z, LI H X, et al. Study on effects of Ranunculusternatus against Mycobacterium tuberculosis in vitro[J]. Journal of Anhui Agricultural Sciences, 2015, 43(19):76-77. DOI: 10.13989/j.cnki.0517-6611.2015.19.029.
doi: 10.13989/j.cnki.0517-6611.2015.19.029 |
|
| [3] | ZHANG L, LI R, LI M, et al. In vitro and in vivo study of anti-tuberculosis effect of extracts isolated from Ranunculi Ternati Radix[J]. Sarcoidosis,Vasculitis, and Diffuse Lung Diseases, 2015, 31(4):336-342. |
| [4] | FLOYD K. Global tuberculosis report 2019[R]. Geneva: World Health Organization, 2019. |
| [5] |
LOHIYA A, SULIANKATCHI ABDULKADER R, RATH R S, et al. Prevalence and patterns of drug resistant pulmonary tuberculosis in India-A systematic review and meta-analysis[J]. Journal of Global Antimicrobial Resistance, 2020, 22:308-316. DOI: 10.1016/j.jgar.2020.03.008.
doi: 10.1016/j.jgar.2020.03.008 |
| [6] |
FENG Z M, ZHAN Z L, YANG Y N, et al. New heterocyclic compounds from Ranunculus ternatus Thunb.[J]. Bioorganic Chemistry, 2017, 74:10-14. DOI: 10.1016/j.bioorg.2017.07.004.
doi: 10.1016/j.bioorg.2017.07.004 |
| [7] |
周勇, 程芳. 猫爪草对肺结核患者外周血淋巴细胞颗粒裂解肽表达及其T淋巴细胞杀菌能力的影响[J]. 中国药学杂志, 2017, 52(18):1629-1632. DOI: 10.11669/cpj.2017.18.015.
doi: 10.11669/cpj.2017.18.015 |
|
ZHOU Y, CHENG F. The effect of Radix Ranuncoli Ternati on the expression of granule lytic peptide and bactericidal ability of T lymphocyte in peripheral blood lymphocytes of patients with pulmonary tuberculosis[J]. Chinese Pharmaceutical Journal, 2017, 52(18):1629-1632. DOI: 10.11669/cpj.2017.18.015.
doi: 10.11669/cpj.2017.18.015 |
|
| [8] |
杨牧之, 王国萍, 王斌. 猫爪草多糖对小鼠腹腔巨噬细胞活力的调节作用[J]. 基因组学与应用生物学, 2019, 38(5):1997-2003. DOI: 10.13417/j.gab.038.001997.
doi: 10.13417/j.gab.038.001997 |
|
YANG M Z, WANG G P, WANG B. Regulating effects of polysaccharide from Radix Ranunculi Ternati on the cell vitality of murine peritoneal macrophages[J]. Genomics and Applied Biology, 2019, 38(5):1997-2003. DOI: 10.13417/j.gab.038.001997.
doi: 10.13417/j.gab.038.001997 |
|
| [9] |
RU J L, LI P, WANG J N, et al. TCMSP: a database of systems pharmacology for drug discovery from herbalmedicines[J]. Journal of Cheminformatics, 2014, 6:13. DOI: 10.1186/1758-2946-6-13.
doi: 10.1186/1758-2946-6-13 |
| [10] |
刘淇, 纪雅菲, 周洪莉, 等. 基于网络药理学探索荆芥-防风药对抗过敏作用的研究[J]. 中药药理与临床, 2020, 36(5):136-143. DOI: 10.13412/j.cnki.zyyl.20200825.002.
doi: 10.13412/j.cnki.zyyl.20200825.002 |
|
LIU Q, JI Y F, ZHOU H L, et al. Study on the anti-allergic effect of Jingjie-Fangfeng drug pair based on network pharmacology[J]. Pharmacology and Clinics of Chinese Materia Medica, 2020, 36(5):136-143. DOI: 10.13412/j.cnki.zyyl.20200825.002.
doi: 10.13412/j.cnki.zyyl.20200825.002 |
|
| [11] |
ZHANG R Z, ZHU X, BAI H, et al. Network pharmacology databases for traditional Chinese medicine: Review and assessment[J]. Frontiers in Pharmacology, 2019, 10:123. DOI: 10.3389/fphar.2019.00123.
doi: 10.3389/fphar.2019.00123 |
| [12] |
但文超, 何庆勇, 曲艺, 等. 基于网络药理学的枳术丸调治血脂异常的分子机制研究[J]. 世界科学技术-中医药现代化, 2019, 21(11):2396-2405. DOI: 10.11842/wst.20190723008.
doi: 10.11842/wst.20190723008 |
|
DAN W C, HE Q Y, QU Y, et al. Molecular mechanism of Zhizhu Pill in treatment of dyslipidemia based on network pharmacology[J]. Modernization of Traditional Chinese Medicine-World Science and Technology, 2019, 21(11):2396-2405. DOI: 10.11842/wst.20190723008.
doi: 10.11842/wst.20190723008 |
|
| [13] |
SZKLARCZYK D, GABLE A L, LYON D, et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Research, 2019, 47(D1):D607-D613. DOI: 10.1093/nar/gky1131.
doi: 10.1093/nar/gky1131 |
| [14] |
袁岸, 刘淇, 饶志粒, 等. 基于网络药理学的荆芥挥发油主要成分抗炎机制研究[J]. 中国药理学通报, 2020, 36(1):97-103. DOI: 10.3969/j.issn.1001-1978.2020.01.020.
doi: 10.3969/j.issn.1001-1978.2020.01.020 |
|
YUAN A, LIU Q, RAO Z L, et al. Anti-inflammatory mechanism of main constituents in essential oil from Schizonepeta tenuifolia Briq. based on network pharmacology[J]. Chinese Pharmacological Bulletin, 2020, 36(1):97-103. DOI: 10.3969/j.issn.1001-1978.2020.01.020.
doi: 10.3969/j.issn.1001-1978.2020.01.020 |
|
| [15] |
ABDALLA A E, EJAZ H, MAHJOOB M O, et al. Intelligent mechanisms of macrophage apoptosis subversion by Mycobacterium[J]. Pathogens, 2020, 9(3):218. DOI: 10.3390/pathogens9030218.
doi: 10.3390/pathogens9030218 |
| [16] |
VILCHÈZE C, JACOBS W R. The isoniazid paradigm of killing, resistance, and persistence in Mycobacterium tuberculosis[J]. Journal of Molecular Biology, 2019, 431(18):3450-3461. DOI: 10.1016/j.jmb.2019.02.016.
doi: 10.1016/j.jmb.2019.02.016 |
| [17] |
师清博, 赵明明, 王春凤, 等. 结核分枝杆菌感染与巨噬细胞凋亡的免疫机制研究进展[J]. 中国兽医学报, 2017, 37(9):1811-1816. DOI: 10.16303/j.cnki.1005-4545.2017.09.32.
doi: 10.16303/j.cnki.1005-4545.2017.09.32 |
|
SHI Q B, ZHAO M M, WANG C F, et al. Immune mechanisms of Mycobacterium tuberculosis-induced macro phage apoptosis[J]. Chinese Journal of Veterinary Medicine, 2017, 37(9):1811-1816. DOI: 10.16303/j.cnki.1005-4545.2017.09.32.
doi: 10.16303/j.cnki.1005-4545.2017.09.32 |
|
| [18] |
罗红, 郑碧英, 徐军发. 巨噬细胞凋亡抗结核分枝杆菌感染的研究进展[J]. 细胞与分子免疫学杂志, 2019, 35(7):665-670. DOI: 10.13423/j.cnki.cjcmi.008849.
doi: 10.13423/j.cnki.cjcmi.008849 |
|
LUO H, ZHENG B Y, XU J F. Research progress of macrophage apoptosis against Mycobacterium tuberculosis infection[J]. Journal of Cellular and Molecular Immunology, 2019, 35(7):665-670. DOI: 10.13423/j.cnki.cjcmi.008849.
doi: 10.13423/j.cnki.cjcmi.008849 |
|
| [19] |
王旭东, 吴利先. 结核分枝杆菌与巨噬细胞相互作用的研究进展[J]. 中国病原生物学杂志, 2015, 10(6):571-573. DOI: 10.13350/j.cjpb.150622.
doi: 10.13350/j.cjpb.150622 |
|
WANG X D, WU L X. Advances in study of the interaction of Mycobacterium tuberculosis and macrophages[J]. Journal of Pathogen Biology, 2015, 10(6):571-573. DOI: 10.13350/j.cjpb.150622.
doi: 10.13350/j.cjpb.150622 |
|
| [20] |
王健宏, 徐兆坤, 李武. 结核分枝杆菌CFP10和ESAT6对巨噬细胞RAW264.7凋亡及AIM2/ASC/Caspase-8通路的影响[J]. 微生物学通报, 2020, 47(12):113-4121. DOI: 10.13344/j.microbiol.china.200056.
doi: 10.13344/j.microbiol.china.200056 |
|
WANG J H, XU Z K, LI W. Effects of CFP10 and ESAT6 on cell apoptosis and AIM2/ASC/Caspase-8 pathway in RAW264.7 macrophages[J]. Microbiology China, 2020, 47(12):4113-4121. DOI: 10.13344/j.microbiol.china.200056.
doi: 10.13344/j.microbiol.china.200056 |
|
| [21] |
ZHAO X, KHAN N, GAN H, et al. Bcl-xL mediates RIPK3-dependent necrosis in M. tuberculosis-infected macrophages[J]. Mucosal Immunology, 2017, 10(6):1553-1568. DOI: 10.1038/mi.2017.12.
doi: 10.1038/mi.2017.12 |
| [22] |
ZHANG W, LU Q, DONG Y S, et al. Rv3033, as an emerging anti-apoptosis factor, facilitates Mycobacteria survival via inhibiting macrophage intrinsic apoptosis[J]. Frontiers in Immunology, 2018, 9:2136. DOI: 10.3389/fimmu.2018.02136.
doi: 10.3389/fimmu.2018.02136 |
| [23] |
FANG M, SHINOMIYA T, NAGAHARA Y. Cell death induction by Ranunculusternatus extract is independent of mitochondria and dependent on Caspase-7[J]. 3 Biotech, 2020, 10(3):1-11. DOI: 10.1007/s13205-020-2111-z.
doi: 10.1007/s13205-020-2111-z |
| [24] | 周玲玉. β-谷甾醇对人肺癌细胞增殖、凋亡影响的初步研究[D]. 重庆:重庆医科大学, 2016. |
| ZHOU L Y. Effect of β-sitosterol on the proliferation and apoptosis of lung cancer cell line[D]. Chongqing: Chongqing Medical University, 2016. |
|
||
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits third parties to freely share (i.e., copy and redistribute the material in any medium or format) and adapt (i.e., remix, transform, or build upon the material) the articles published in this journal, provided that appropriate credit is given, a link to the license is provided, and any changes made are indicated. The material may not be used for commercial purposes. For details of the CC BY-NC 4.0 license, please visit: https://creativecommons.org/licenses/by-nc/4.0