Shandong Science ›› 2021, Vol. 34 ›› Issue (6): 51-61.doi: 10.3976/j.issn.1002-4026.2021.06.007
• Pharmacology and Toxicology • Previous Articles Next Articles
LIU Yuan1(),CHEN Jie1,SUN Hui1,XU Yuan-nan2,MA Zhi-qiang1,LIU Xiang-fang1,LIU Meng-xing1,LIU Xing1,*(
)
Received:
2020-10-23
Online:
2021-12-20
Published:
2021-12-13
Contact:
LIU Xing
E-mail:254914514@qq.com
CLC Number:
LIU Yuan, CHEN Jie, SUN Hui, XU Yuan-nan, MA Zhi-qiang, LIU Xiang-fang, LIU Meng-xing, LIU Xing. Study on the mechanism of Ranunculi Ternati Radix in the treatment of tuberculosis based on network pharmacology[J].Shandong Science, 2021, 34(6): 51-61.
Table 1
Ranunculi Ternati Radix compound information characteristics"
编号 | 活性成分 | OB/% | DL |
---|---|---|---|
MOL000242 | 7-O-methyleridictyol(7-O-甲基圣草酚) | 56.56 | 0.27 |
MOL011328 | stigmasta-4,6,8(豆甾-4,6,8) | 48.02 | 0.77 |
MOL011330 | vittadinoside_qt(维太菊苷) | 43.83 | 0.76 |
MOL000449 | stigmasterol(豆甾醇) | 43.83 | 0.76 |
MOL006772 | poriferasterolmonoglucoside_qt(豆甾醇葡萄糖苷) | 43.83 | 0.76 |
MOL011319 | truflex OBP(邻苯二甲酸正丁异辛酯) | 43.74 | 0.24 |
MOL001494 | mandenol(亚油酸乙酯) | 42.00 | 0.19 |
MOL001973 | sitosteryl acetate(谷甾醇乙酸酯) | 40.39 | 0.85 |
MOL000593 | cholesterol(胆固醇) | 37.87 | 0.68 |
MOL005438 | cmpesterol(菜油甾醇) | 37.58 | 0.71 |
MOL000358 | bate-sitosterol(β-谷甾醇) | 36.91 | 0.75 |
MOL011312 | (3R,8S,9S,10S,13R,17R)-17-((2S,5R)-5-ethyl-6-methylheptan-2-yl)-3,10,13-trimethyl- 2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenthrene | 30.10 | 0.74 |
Table 2
Potential targets of Ranunculi Ternati Radix"
序号 | 靶点 | Uniprot ID | 序号 | 靶点 | Uniprot ID | 序号 | 靶点 | Uniprot ID |
---|---|---|---|---|---|---|---|---|
1 | ADH1C | P00326 | 15 | CHRM3 | P20309 | 29 | OPRM1 | P35372 |
2 | ADRA1A | P35348 | 16 | CHRM4 | P08173 | 30 | PGR | P06401 |
3 | ADRA1B | P35368 | 17 | CHRNA2 | Q15822 | 31 | PLAU | P00749 |
4 | ADRA2A | P08913 | 18 | CTRB1 | P17538 | 32 | PON1 | P27169 |
5 | ADRB1 | P08588 | 19 | GABRA1 | P14867 | 33 | PRKCA | P17612 |
6 | ADRB2 | P07550 | 20 | JUN | P05412 | 34 | PTGS1 | P23219 |
7 | AKR1B1 | P15121 | 21 | KCNH2 | Q12809 | 35 | PTGS2 | P35354 |
8 | BAX | Q07812 | 22 | LTA4H | P09960 | 36 | RXRA | P19793 |
9 | BCL2 | P10415 | 23 | MAOA | P21397 | 37 | SCN5A | Q14524 |
10 | CASP3 | P42574 | 24 | MAP2 | P11137 | 38 | SLC6A2 | P23975 |
11 | CASP8 | Q14790 | 25 | NCOA1 | Q15788 | 39 | SLC6A3 | Q01959 |
12 | CASP9 | P55211 | 26 | NCOA2 | Q15596 | 40 | SLC6A4 | P31645 |
13 | CHRM1 | P11229 | 27 | NR3C2 | P08235 | |||
14 | CHRM2 | P08172 | 28 | MAOB | P27338 |
Table 3
Analysis of overlapping targets between Ranunculi Ternati Radix and TB"
关键靶点 | 全称 | Uniprot ID | 度值 |
---|---|---|---|
CASP3 | Caspase-3 | P42574 | 5 |
CASP8 | Caspase-8 | Q14790 | 5 |
CASP9 | Caspase-9 | P55211 | 5 |
BCL2 | Apoptosis regulator Bcl-2 | P10415 | 4 |
BAX | Apoptosis regulator BAX | Q07812 | 5 |
JUN | Transcription factor AP-1 | P05412 | 4 |
Table 4
Results of KEGG enrichment analysis"
信号通路 | 基因数 | 靶点 | P值 |
---|---|---|---|
乙肝 | 6 | JUN、BAX、BCL2、CASP3、CASP8、CASP9 | 2.57×10-7 |
凋亡 | 6 | JUN、BAX、BCL2、CASP3、CASP8、CASP9 | 4.30×10-7 |
癌症通路 | 6 | JUN、BAX、BCL2、CASP3、CASP8、CASP9 | 3.57×10-5 |
EB病毒感染 | 6 | JUN、BAX、BCL2、CASP3、CASP8、CASP9 | 3.96×10-5 |
麻疹 | 6 | JUN、BAX、BCL2、CASP3、CASP8、CASP9 | 4.18×10-5 |
TB | 5 | BAX、BCL2、CASP3、CASP8、CASP9 | 4.76×10-5 |
HIV-1病毒感染 | 6 | JUN、BAX、BCL2、CASP3、CASP8、CASP9 | 5.13×10-5 |
p53信号通路 | 5 | BAX、BCL2、CASP3、CASP8、CASP9 | 6.79×10-5 |
单纯疱疹病毒感染 | 5 | BAX、BCL2、CASP3、CASP8、CASP9 | 2.63×10-2 |
沙门氏菌感染 | 5 | JUN、BAX、BCL2、CASP3、CASP8 | 2.94×10-2 |
Table 5
The interaction of active ingredients of Ranunculi Ternati Radix with the 5 targets (affinity energy)"
活性成分 | 靶点 | ||||
---|---|---|---|---|---|
CASP3 | CASP8 | CASP9 | BCL2 | BAX | |
7-O-Methyleridictyol | -7.5 | -6.4 | -6.3 | -6.7 | -7.0 |
Stigmasta-4,6,8 | -7.6 | -6.8 | -8.4 | -7.8 | -9.0 |
vittadinoside_qt | -7.5 | -7.1 | -7.9 | -7.0 | -8.5 |
Stigmasterol | -7.7 | -7.6 | -8.5 | -7.2 | -8.7 |
poriferasterol monoglucoside_qt | -8.5 | -7.2 | -7.9 | -8.2 | -8.0 |
Truflex OBP | -5.3 | -4.8 | -4.5 | -5.4 | -5.8 |
Mandenol | -5.1 | -4.4 | -4.4 | -5.6 | -5.0 |
Sitosteryl acetate | -8.2 | -6.8 | -8.2 | -7.6 | -8.2 |
CLR | -7.3 | -6.8 | -8.0 | -6.9 | -8.5 |
cmpesterol | -6.9 | -6.9 | -8.4 | -7.6 | -8.8 |
bate-sitosterol | -6.9 | -7.3 | -8.4 | -7.7 | -8.3 |
(3R,8S,9S,10S,13R,17R)-17-((2S,5R)-5-ethyl-6- methylheptan-2-yl)-3,10,13-trimethyl-2,3,4,7,8,9,10, 11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenthrene | -7.1 | -6.2 | -7.1 | -7.8 | -8.2 |
[1] | 国家药典委员会. 中华人民共和国药典2015年版一部[M]. 北京: 中国医药科技出版社, 2015: 319-320. |
Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China 2015 Volume 1[M]. Beijing: China Medical Science and Technology Press, 2015: 319-320. | |
[2] |
杨堃, 邓可众, 李汉兴, 等. 猫爪草体外抗结核作用研究[J]. 安徽农业科学, 2015, 43(19):76-77. DOI: 10.13989/j.cnki.0517-6611.2015.19.029.
doi: 10.13989/j.cnki.0517-6611.2015.19.029 |
YANG K, DENG K Z, LI H X, et al. Study on effects of Ranunculusternatus against Mycobacterium tuberculosis in vitro[J]. Journal of Anhui Agricultural Sciences, 2015, 43(19):76-77. DOI: 10.13989/j.cnki.0517-6611.2015.19.029.
doi: 10.13989/j.cnki.0517-6611.2015.19.029 |
|
[3] | ZHANG L, LI R, LI M, et al. In vitro and in vivo study of anti-tuberculosis effect of extracts isolated from Ranunculi Ternati Radix[J]. Sarcoidosis,Vasculitis, and Diffuse Lung Diseases, 2015, 31(4):336-342. |
[4] | FLOYD K. Global tuberculosis report 2019[R]. Geneva: World Health Organization, 2019. |
[5] |
LOHIYA A, SULIANKATCHI ABDULKADER R, RATH R S, et al. Prevalence and patterns of drug resistant pulmonary tuberculosis in India-A systematic review and meta-analysis[J]. Journal of Global Antimicrobial Resistance, 2020, 22:308-316. DOI: 10.1016/j.jgar.2020.03.008.
doi: 10.1016/j.jgar.2020.03.008 |
[6] |
FENG Z M, ZHAN Z L, YANG Y N, et al. New heterocyclic compounds from Ranunculus ternatus Thunb.[J]. Bioorganic Chemistry, 2017, 74:10-14. DOI: 10.1016/j.bioorg.2017.07.004.
doi: 10.1016/j.bioorg.2017.07.004 |
[7] |
周勇, 程芳. 猫爪草对肺结核患者外周血淋巴细胞颗粒裂解肽表达及其T淋巴细胞杀菌能力的影响[J]. 中国药学杂志, 2017, 52(18):1629-1632. DOI: 10.11669/cpj.2017.18.015.
doi: 10.11669/cpj.2017.18.015 |
ZHOU Y, CHENG F. The effect of Radix Ranuncoli Ternati on the expression of granule lytic peptide and bactericidal ability of T lymphocyte in peripheral blood lymphocytes of patients with pulmonary tuberculosis[J]. Chinese Pharmaceutical Journal, 2017, 52(18):1629-1632. DOI: 10.11669/cpj.2017.18.015.
doi: 10.11669/cpj.2017.18.015 |
|
[8] |
杨牧之, 王国萍, 王斌. 猫爪草多糖对小鼠腹腔巨噬细胞活力的调节作用[J]. 基因组学与应用生物学, 2019, 38(5):1997-2003. DOI: 10.13417/j.gab.038.001997.
doi: 10.13417/j.gab.038.001997 |
YANG M Z, WANG G P, WANG B. Regulating effects of polysaccharide from Radix Ranunculi Ternati on the cell vitality of murine peritoneal macrophages[J]. Genomics and Applied Biology, 2019, 38(5):1997-2003. DOI: 10.13417/j.gab.038.001997.
doi: 10.13417/j.gab.038.001997 |
|
[9] |
RU J L, LI P, WANG J N, et al. TCMSP: a database of systems pharmacology for drug discovery from herbalmedicines[J]. Journal of Cheminformatics, 2014, 6:13. DOI: 10.1186/1758-2946-6-13.
doi: 10.1186/1758-2946-6-13 |
[10] |
刘淇, 纪雅菲, 周洪莉, 等. 基于网络药理学探索荆芥-防风药对抗过敏作用的研究[J]. 中药药理与临床, 2020, 36(5):136-143. DOI: 10.13412/j.cnki.zyyl.20200825.002.
doi: 10.13412/j.cnki.zyyl.20200825.002 |
LIU Q, JI Y F, ZHOU H L, et al. Study on the anti-allergic effect of Jingjie-Fangfeng drug pair based on network pharmacology[J]. Pharmacology and Clinics of Chinese Materia Medica, 2020, 36(5):136-143. DOI: 10.13412/j.cnki.zyyl.20200825.002.
doi: 10.13412/j.cnki.zyyl.20200825.002 |
|
[11] |
ZHANG R Z, ZHU X, BAI H, et al. Network pharmacology databases for traditional Chinese medicine: Review and assessment[J]. Frontiers in Pharmacology, 2019, 10:123. DOI: 10.3389/fphar.2019.00123.
doi: 10.3389/fphar.2019.00123 |
[12] |
但文超, 何庆勇, 曲艺, 等. 基于网络药理学的枳术丸调治血脂异常的分子机制研究[J]. 世界科学技术-中医药现代化, 2019, 21(11):2396-2405. DOI: 10.11842/wst.20190723008.
doi: 10.11842/wst.20190723008 |
DAN W C, HE Q Y, QU Y, et al. Molecular mechanism of Zhizhu Pill in treatment of dyslipidemia based on network pharmacology[J]. Modernization of Traditional Chinese Medicine-World Science and Technology, 2019, 21(11):2396-2405. DOI: 10.11842/wst.20190723008.
doi: 10.11842/wst.20190723008 |
|
[13] |
SZKLARCZYK D, GABLE A L, LYON D, et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Research, 2019, 47(D1):D607-D613. DOI: 10.1093/nar/gky1131.
doi: 10.1093/nar/gky1131 |
[14] |
袁岸, 刘淇, 饶志粒, 等. 基于网络药理学的荆芥挥发油主要成分抗炎机制研究[J]. 中国药理学通报, 2020, 36(1):97-103. DOI: 10.3969/j.issn.1001-1978.2020.01.020.
doi: 10.3969/j.issn.1001-1978.2020.01.020 |
YUAN A, LIU Q, RAO Z L, et al. Anti-inflammatory mechanism of main constituents in essential oil from Schizonepeta tenuifolia Briq. based on network pharmacology[J]. Chinese Pharmacological Bulletin, 2020, 36(1):97-103. DOI: 10.3969/j.issn.1001-1978.2020.01.020.
doi: 10.3969/j.issn.1001-1978.2020.01.020 |
|
[15] |
ABDALLA A E, EJAZ H, MAHJOOB M O, et al. Intelligent mechanisms of macrophage apoptosis subversion by Mycobacterium[J]. Pathogens, 2020, 9(3):218. DOI: 10.3390/pathogens9030218.
doi: 10.3390/pathogens9030218 |
[16] |
VILCHÈZE C, JACOBS W R. The isoniazid paradigm of killing, resistance, and persistence in Mycobacterium tuberculosis[J]. Journal of Molecular Biology, 2019, 431(18):3450-3461. DOI: 10.1016/j.jmb.2019.02.016.
doi: 10.1016/j.jmb.2019.02.016 |
[17] |
师清博, 赵明明, 王春凤, 等. 结核分枝杆菌感染与巨噬细胞凋亡的免疫机制研究进展[J]. 中国兽医学报, 2017, 37(9):1811-1816. DOI: 10.16303/j.cnki.1005-4545.2017.09.32.
doi: 10.16303/j.cnki.1005-4545.2017.09.32 |
SHI Q B, ZHAO M M, WANG C F, et al. Immune mechanisms of Mycobacterium tuberculosis-induced macro phage apoptosis[J]. Chinese Journal of Veterinary Medicine, 2017, 37(9):1811-1816. DOI: 10.16303/j.cnki.1005-4545.2017.09.32.
doi: 10.16303/j.cnki.1005-4545.2017.09.32 |
|
[18] |
罗红, 郑碧英, 徐军发. 巨噬细胞凋亡抗结核分枝杆菌感染的研究进展[J]. 细胞与分子免疫学杂志, 2019, 35(7):665-670. DOI: 10.13423/j.cnki.cjcmi.008849.
doi: 10.13423/j.cnki.cjcmi.008849 |
LUO H, ZHENG B Y, XU J F. Research progress of macrophage apoptosis against Mycobacterium tuberculosis infection[J]. Journal of Cellular and Molecular Immunology, 2019, 35(7):665-670. DOI: 10.13423/j.cnki.cjcmi.008849.
doi: 10.13423/j.cnki.cjcmi.008849 |
|
[19] |
王旭东, 吴利先. 结核分枝杆菌与巨噬细胞相互作用的研究进展[J]. 中国病原生物学杂志, 2015, 10(6):571-573. DOI: 10.13350/j.cjpb.150622.
doi: 10.13350/j.cjpb.150622 |
WANG X D, WU L X. Advances in study of the interaction of Mycobacterium tuberculosis and macrophages[J]. Journal of Pathogen Biology, 2015, 10(6):571-573. DOI: 10.13350/j.cjpb.150622.
doi: 10.13350/j.cjpb.150622 |
|
[20] |
王健宏, 徐兆坤, 李武. 结核分枝杆菌CFP10和ESAT6对巨噬细胞RAW264.7凋亡及AIM2/ASC/Caspase-8通路的影响[J]. 微生物学通报, 2020, 47(12):113-4121. DOI: 10.13344/j.microbiol.china.200056.
doi: 10.13344/j.microbiol.china.200056 |
WANG J H, XU Z K, LI W. Effects of CFP10 and ESAT6 on cell apoptosis and AIM2/ASC/Caspase-8 pathway in RAW264.7 macrophages[J]. Microbiology China, 2020, 47(12):4113-4121. DOI: 10.13344/j.microbiol.china.200056.
doi: 10.13344/j.microbiol.china.200056 |
|
[21] |
ZHAO X, KHAN N, GAN H, et al. Bcl-xL mediates RIPK3-dependent necrosis in M. tuberculosis-infected macrophages[J]. Mucosal Immunology, 2017, 10(6):1553-1568. DOI: 10.1038/mi.2017.12.
doi: 10.1038/mi.2017.12 |
[22] |
ZHANG W, LU Q, DONG Y S, et al. Rv3033, as an emerging anti-apoptosis factor, facilitates Mycobacteria survival via inhibiting macrophage intrinsic apoptosis[J]. Frontiers in Immunology, 2018, 9:2136. DOI: 10.3389/fimmu.2018.02136.
doi: 10.3389/fimmu.2018.02136 |
[23] |
FANG M, SHINOMIYA T, NAGAHARA Y. Cell death induction by Ranunculusternatus extract is independent of mitochondria and dependent on Caspase-7[J]. 3 Biotech, 2020, 10(3):1-11. DOI: 10.1007/s13205-020-2111-z.
doi: 10.1007/s13205-020-2111-z |
[24] | 周玲玉. β-谷甾醇对人肺癌细胞增殖、凋亡影响的初步研究[D]. 重庆:重庆医科大学, 2016. |
ZHOU L Y. Effect of β-sitosterol on the proliferation and apoptosis of lung cancer cell line[D]. Chongqing: Chongqing Medical University, 2016. |
|