[1] |
杜泽学, 黄顺贤, 曹东学. 石化低碳转型发展绿氢的挑战与建议[J]. 石油学报(石油加工), 2021, 37(6):1452-1460.
|
[2] |
FENG H W, SUN C H, ZHANG C F, et al. Bioconversion of mature landfill leachate into biohydrogen and volatile fatty acids via microalgal photosynthesis together with dark fermentation[J]. Energy Conversion and Management, 2022, 252: 115035. DOI: 10.1016/j.enconman.2021.115035.
|
[3] |
LI S N, LI F H, ZHU X, et al. Biohydrogen production from microalgae for environmental sustainability[J]. Chemosphere, 2022, 291: 132717. DOI: 10.1016/j.chemosphere.2021.132717.
|
[4] |
ALEXANDROPOULOU M, ANTONOPOULOU G, NTAIKOU I, et al. The impact of alkaline/hydrogen peroxide pretreatment on hydrogen and methane production from biomasses of different origin: The case of willow sawdust and date palm fibers[J]. Sustainable Chemistry and Pharmacy, 2023, 32: 100971. DOI: 10.1016/j.scp.2023.100971.
|
[5] |
GIANG T T, LUNPROM S, LIAO Q, et al. Improvement of hydrogen production from Chlorella sp. biomass by acid-thermal pretreatment[J]. PeerJ, 2019, 7: e6637. DOI: 10.7717/peerj.6637.
|
[6] |
NAVARRO B L, CHALLIOL A Z, BORTOLOTI M A, et al. Methane production potential from anaerobic digestion of plant biomass residues and food waste as substrates[J]. Journal of Material Cycles and Waste Management, 2022, 24(6): 2470-2482. DOI: 10.1007/s10163-022-01496-5.
|
[7] |
AHMAD A L, MAT YASIN N H, DEREK C J C, et al. Microalgae as a sustainable energy source for biodiesel production: A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 584-593. DOI: 10.1016/j.rser.2010.09.018.
|
[8] |
HUANG G H, CHEN F, WEI D, et al. Biodiesel production by microalgal biotechnology[J]. Applied Energy, 2010, 87(1): 38-46. DOI: 10.1016/j.apenergy.2009.06.016.
|
[9] |
陈小梅, 李萍, 陈雅欢, 等. 浅析作物诱变育种[J]. 农家致富顾问, 2019(6): 10. DOI:10.3969/j.issn.1003-9902.2019.06.011.
|
[10] |
韩飞. 高温胁迫与超声刺激促进微藻油脂积累的过程及机理[D]. 济南: 山东大学, 2016.
|
[11] |
郑立, 杨佰娟, 韩笑天, 等. 海洋微藻超声波辅助直接合成生物柴油的工艺研究[J]. 中国油脂, 2011, 36(4): 47-50.
|
[12] |
SIVARAMAKRISHNAN R, INCHAROENSAKDI A. Enhancement of lipid production in Scenedesmus sp. by UV mutagenesis and hydrogen peroxide treatment[J]. Bioresource Technology, 2017, 235: 366-370. DOI: 10.1016/j.biortech.2017.03.102.
|
[13] |
CHENG J, LU H X, HUANG Y, et al. Enhancing growth rate and lipid yield of Chlorella with nuclear irradiation under high salt and CO2 stress[J]. Bioresource Technology, 2016, 203: 220-227. DOI: 10.1016/j.biortech.2015.12.032.
|
[14] |
朱甲妮. 超声波强化微藻利用初沉池出水的油脂合成[D]. 哈尔滨: 哈尔滨工业大学, 2017.
|
[15] |
张帅, 程昊, 邱彩霞, 等. 超声波诱变对猴头菇粗多糖的影响[J]. 食品与发酵工业, 2020, 46(2): 126-130. DOI:10.13995/j.cnki.11-1802/ts.020842.
|
[16] |
李玉芹, 齐振华, 郝丽阳, 等. 外源植物激素对胶球藻生物量和油脂富集的影响[J]. 湘潭大学学报(自然科学版), 2022, 44(05): 10-20. DOI:10.13715/j.cnki.nsjxu.2022.05.002.
|
[17] |
胡文军. 产油微藻的筛选、鉴定及其培养条件的研究[D]. 无锡: 江南大学, 2013.
|
[18] |
涂泽敏, 吴芳燕, 罗剑飞, 等. 产油脂微藻的分离、鉴定及筛选[J]. 现代食品科技, 2018, 34(12): 181-186.
|
[19] |
BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72: 248-254. DOI: 10.1006/abio.1976.9999.
pmid: 942051
|
[20] |
肖若楠. 低强度超声波促进微藻油脂累积规律及其机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
|
[21] |
卫治金, 李晓, 王皓楠, 等. 高产油小球藻的低温等离子体诱变育种[J]. 中国油脂, 2019, 44(7): 117-121. DOI: 10.3969/j.issn.1003-7969.2019.07.025.
|
[22] |
孟丹阳, 杜艳, 陈复生. 微藻中蛋白质的提取方法研究进展[J]. 食品与发酵工业, 2023, 49(21): 346-357.
doi: 10.13995/j.cnki.11-1802/ts.033701
|
[23] |
李青, 吴洪, 蔡忠贞, 等. 利用流式细胞仪筛选紫外诱变高含油小球藻[J]. 中国油脂, 2018, 43(5): 110-112,122. DOI:10.3969/j.issn.1003-7969.2018.05.025.
|
[24] |
王垿. 等离子体辐射对双对栅藻油脂积累的影响及优势藻株筛选[D]. 西安: 西安建筑科技大学, 2020. DOI:10.27393/d.cnki.gxazu.2020.001717.
|