Shandong Science ›› 2025, Vol. 38 ›› Issue (2): 28-40.doi: 10.3976/j.issn.1002-4026.20240114
• Overview of Ecological Protection Technologies in the Yellow River Basin • Previous Articles Next Articles
MA Jinyan1(), ZHAO Rusong2,*(
)
Received:
2024-10-08
Online:
2025-04-20
Published:
2025-04-16
CLC Number:
MA Jinyan, ZHAO Rusong. Current status of contamination of environmental and food samples with pharmaceutical and personal care products and sample pretreatment analytical techniques[J].Shandong Science, 2025, 38(2): 28-40.
Table 1
Concentrations of BPs in different media"
BPs污染物 | 来源 | 年份 | 质量浓度/(ng·L-1) | 参考文献 |
---|---|---|---|---|
广元市河流 | 2021 | 12.51~186.76 | [ | |
双酚A | 珠江广州河段 | 2022 | 85.40~124.00 | [ |
城市水源(广元市) | 2020—2021 | 32.24~187.09 | [ | |
双酚F | 珠江广州河段 | 2022 | 29.30~62.10 | [ |
双酚S | 白龙江(丰水期) | 2020 | N.D.~1.25 | [ |
白龙江(丰水期) | 2021 | N.D.~1.78 | [ | |
市售鱼类 | 2018 | N.D.~28.60 | [ | |
市售鱼类 | 2022 | 0.10~62.48 | [ | |
双酚B | 塑料包装食品及饮品 | 2021 | N.D.~29.70 | [ |
Table 2
Concentrations of NSAIDs in different media"
NSAIDs污染物 | 来源 | 年份 | 质量浓度/(ng·L-1) | 参考文献 |
---|---|---|---|---|
双氯芬酸钠 | 中国黄海及东海 | 2019 | N.D.~12.41 | [ |
宁夏第三排水沟 | 2021 | N.D.~184.72 | [ | |
北极地区 | 2022 | 20.00~180.00 | [ | |
萘普生 | 中国黄海及东海 | 2019 | 22.27~271.30 | [ |
北极地区 | 2022 | 106.00~3 150 | [ | |
布洛芬 | 中国黄海及东海 | 2019 | N.D.~239.00 | [ |
宁夏第三排水沟 | 2021 | N.D.~236.43 | [ | |
对乙酰氨基酚 | 宁夏第三排水沟 | 2021 | N.D.~40.85 | [ |
Table 3
Advantages and disadvantages of sample pretreatment techniques"
类型 | 名称 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|
传统样品前 处理技术 | 液液萃取(LLE) | 操作简单、要求 及成本低 | 有机溶剂消耗大、富集倍数小、 提取工作量大 | [ |
新型样品前 处理技术 | 柱固相萃取(CSPE) | 有机溶剂消耗量少、 富集度高 | 样品质量要求高、 操作要求高 | [ |
磁固相萃取(MSPE) | 操作简单、分离速度快、 操作时间短 | 萃取材料需带磁性,萃取 过程的平衡时间通常较长 | [ | |
固相微萃取(SMPE) | 快速高效、灵敏度高、 环保经济 | 萃取容量有限、萃取头 需定期更换 | [ |
Table 4
Application of new adsorbent materials in sample pretreatment"
材料 | 名称 | 特点 | 分析物 | 前处理技术 | 仪器 | 回收率/% | 检出限 | 参考文献 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
碳纳米管 | M-CNT@ PDE | 聚合物低共 熔溶剂修饰 | 牛血清 白蛋白 | 磁固相 萃取 | 紫外可见 光度计 | 2.67 μg/mL | [ | ||||||||||
共价有机 骨架材料 | MI-COF | 产生印迹空腔, 孔隙率高 | 氟喹诺 酮药物 | 固相萃取 | 高效液 相色谱仪 | 92~113 | 0.32~0.48 μg/L | [ | |||||||||
COF-LZU1@ PEI@Fe3O4 | 聚乙烯亚 胺功能化 | 多环芳烃 | 磁固相萃取 | 高效液 相色谱仪 | 90.9~107.8 | 0.2~20 pg/mL | [ | ||||||||||
共轭微孔 聚合物 | PP-CMP | 聚亚苯基 功能化 | 苯氧羧酸 除草剂 | 分散固相 萃取 | 气相色谱仪 | 86.9~101.3 | 0.55~3.84 ng/L | [ | |||||||||
CMP | 三苯胺卟啉 基功能化 | 邻苯二 甲酸酯 | 固相微 萃取 | 气相色谱仪 | 80~120 | 0.01~3.0 μg/L | [ | ||||||||||
金属有机 骨架材料 | Zn-MOF | 二维MOF, 比表面积大 | 环丙沙星、 氧氟沙星以 及诺氟沙星 | 固相萃取 | 高效液相 色谱-串联 质谱仪 | 0.009~0.016 ng/mL | [ | ||||||||||
iMOF-Ni | 镍基阳离子 | 双酚类 污染物 | 固相萃取 | 高效液 相色谱仪 | 72.2~96.6 | 0.07~0.16 ng/mL | [ | ||||||||||
纳米纤 维毡 | PANI/ PanNFsM | 核壳型纳 米纤维毡, 比表面积大 | 非甾体 抗炎药 | 固相萃取 | 高相液相 色谱-串联 质谱仪 | 85.0~99.7 | [ | ||||||||||
纳米多孔 碳材料 | MMIMs | 比表面积大, 孔隙率高 | 双酚类 污染物 | 磁固相 萃取 | 高效液相色 谱-四级杆- 轨道阱高分 辨质谱仪 | 71.9~108.4 | 0.03~0.30 μg/L | [ |
[1] | XU Y, LIU T J, ZHANG Y, et al. Advances in technologies for pharmaceuticals and personal care products removal[J]. Journal of Materials Chemistry A, 2017, 5(24): 12001-12014. DOI:10.1039/C7TA03698A. |
[2] | BÜNING B, RECHTENBACH D, BEHRENDT J, et al. Removal of emerging micropollutants from wastewater by nanofiltration and biofilm reactor (MicroStop)[J]. Environmental Progress & Sustainable Energy, 2021, 40(3): e13587. DOI:10.1002/ep.13587. |
[3] | PRIYA A K, GNANASEKARAN L, RAJENDRAN S, et al. Occurrences and removal of pharmaceutical and personal care products from aquatic systems using advanced treatment: A review[J]. Environmental Research, 2022, 204: 112298. DOI:10.1016/j.envres.2021.112298. |
[4] | CASTILLO-ZACARÍAS C, BAROCIO M E, HIDALGO-VÁZQUEZ E, et al. Antidepressant drugs as emerging contaminants: Occurrence in urban and non-urban waters and analytical methods for their detection[J]. Science of the Total Environment, 2021, 757: 143722. DOI:10.1016/j.scitotenv.2020.143722. |
[5] | KUMAR M, SRIDHARAN S, SAWARKAR A D, et al. Current research trends on emerging contaminants pharmaceutical and personal care products (PPCPs): A comprehensive review[J]. Science of the Total Environment, 2023, 859: 160031.DOI:10.1016/j.scitotenv.2022.160031. |
[6] | KUMAR M, CHEN H Y, SARSAIYA S, et al. Current research trends on micro- and nano-plastics as an emerging threat to global environment: A review[J]. Journal of Hazardous Materials, 2021, 409: 124967.DOI:10.1016/j.jhazmat.2020.124967. |
[7] | PAROLINI M. Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review[J]. Science of the Total Environment, 2020, 740: 140043. DOI:10.1016/j.scitotenv.2020.140043. |
[8] | ARCILA-SAENZ J, HINCAPIÉ-MEJÍA G, LONDOÑO-CAÑAS Y A, et al. Role of the hydrolytic-acidogenic phase on the removal of bisphenol A and sildenafil during anaerobic treatment[J]. Environmental Monitoring and Assessment, 2023, 195(12): 1552. DOI:10.1007/s10661-023-12009-8. |
[9] |
DODGEN L K, LI J, WU X, et al. Transformation and removal pathways of four common PPCP/EDCs in soil[J]. Environmental Pollution, 2014, 193: 29-36. DOI:10.1016/j.envpol.2014.06.002.
pmid: 24997388 |
[10] | HERNANDEZ-RUIZ S, ABRELL L, WICKRAMASEKARA S, et al. Quantifying PPCP interaction with dissolved organic matter in aqueous solution: Combined use of fluorescence quenching and tandem mass spectrometry[J]. Water Research, 2012, 46(4): 943-954. DOI:10.1016/j.watres.2011.11.061. |
[11] | LIAO C Y, LIU F, ALOMIRAH H, et al. Bisphenol S in urine from the United States and seven Asian countries: Occurrence and human exposures[J]. Environmental Science & Technology, 2012, 46(12): 6860-6866. DOI:10.1021/es301334j. |
[12] |
ZHU R, ZHAO W H, ZHAI M J, et al. Molecularly imprinted layer-coated silica nanoparticles for selective solid-phase extraction of bisphenol A from chemical cleansing and cosmetics samples[J]. Analytica Chimica Acta, 2010, 658(2): 209-216. DOI:10.1016/j.aca.2009.11.008.
pmid: 20103097 |
[13] | 赵斌, 谭学蓉, 薛鸣, 等. 广元市河流中双酚类物质的污染状况及分布特征[J]. 环境监控与预警, 2023, 15(6): 17-23. DOI:10.3969/j.issn.1674-6732.2023.06.003. |
[14] | 梅雨贤, 刘悦弘, 李楠, 等. 珠江广州河段、河涌及管道径流中双酚类化合物的污染特征与生态风险[J]. 华南师范大学学报(自然科学版), 2024, 56(3): 15-24. DOI:10.6054/j.jscnun.2024033. |
[15] | 许东海, 谭学蓉, 赵斌, 等. 2020—2021年广元市主城区水源水和饮用水中双酚类化合物检测分析[J]. 预防医学情报杂志, 2023, 39(2): 219-227. |
[16] | 庄睿, 胡婧, 朱颖, 等. 市售鱼类中双酚A、双酚S污染水平及风险评估[J]. 食品安全导刊, 2024(24): 58-62. |
[17] | 谭学蓉, 许东海, 龙洋, 等. 四川省市售食品中双酚A和双酚S检测结果分析[J]. 预防医学情报杂志, 2018, 34(12): 1507-1512. |
[18] | 孟伟, 曹艳秋, 王开清, 等. 塑料包装食品及饮品检测中双酚类标准物质的应用[J]. 食品安全质量检测学报, 2022, 13(6): 1791-1800. DOI:10.19812/j.cnki.jfsq11-5956/ts.2022.06.020. |
[19] |
TIŠLER T, KREL A, GERŽELJ U, et al. Hazard identification and risk characterization of bisphenols A, F and AF to aquatic organisms[J]. Environmental Pollution, 2016, 212: 472-479. DOI:10.1016/j.envpol.2016.02.045.
pmid: 26957022 |
[20] |
SPERANZA A, CROSTI P, MALERBA M, et al. The environmental endocrine disruptor, bisphenol A, affects germination, elicits stress response and alters steroid hormone production in kiwifruit pollen[J]. Plant Biology, 2011, 13(1): 209-217. DOI:10.1111/j.1438-8677.2010.00330.x.
pmid: 21143743 |
[21] | ADAMAKIS I S, PANTERIS E, CHERIANIDOU A, et al. Effects of bisphenol A on the microtubule arrays in root meristematic cells of Pisum sativum L[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2013, 750(1/2): 111-120. DOI:10.1016/j.mrgentox.2012.10.012. |
[22] |
OUYANG W M, LUO W J, ZHANG D Y, et al. PI-3K/Akt pathway-dependent cyclin D1 expression is responsible for arsenite-induced human keratinocyte transformation[J]. Environmental Health Perspectives, 2008, 116(1): 1-6. DOI:10.1289/ehp.10403.
pmid: 18197291 |
[23] | RANJAN N, SINGH P K, MAURYA N S. Pharmaceuticals in water as emerging pollutants for river health: A critical review under Indian conditions[J]. Ecotoxicology and Environmental Safety, 2022, 247: 114220. DOI:10.1016/j.ecoenv.2022.114220. |
[24] | HUYNH N C, NGUYEN T T T, NGUYEN D T C, et al. Occurrence, toxicity, impact and removal of selected non-steroidal anti-inflammatory drugs (NSAIDs): A review[J]. Science of the Total Environment, 2023, 898: 165317. DOI:10.1016/j.scitotenv.2023.165317. |
[25] | RASTOGI A, TIWARI M K, GHANGREKAR M M. A review on environmental occurrence, toxicity and microbial degradation of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)[J]. Journal of Environmental Management, 2021, 300: 113694. DOI:10.1016/j.jenvman.2021.113694. |
[26] | 李富娟, 高礼, 李凌云, 等. 宁夏第三排水沟中药物和个人护理品(PPCPs)的污染特征与生态风险评估[J]. 环境科学, 2022, 43(8): 4087-4096. DOI:10.13227/j.hjkx.202112080. |
[27] | 陈贤, 张彩杰, 杨桂朋, 等. 典型药物及个人护理品在黄东海海域水体中的检测、分布规律及其风险评估[J]. 环境科学, 2020, 41(1): 194-204. DOI:10.13227/j.hjkx.201907028. |
[28] | 闵熙泽, 张子峰, 滕雨芊, 等. 北极地区水环境中PPCPs的污染现状研究进展[J]. 哈尔滨工业大学学报, 2023, 55(6): 19-32. DOI:10.11918/202209076. |
[29] | SUN M X, FENG J J, FENG Y, et al. Preparation of ionic covalent organic frameworks and their applications in solid-phase extraction[J]. TrAC Trends in Analytical Chemistry, 2022, 157: 116829. DOI:10.1016/j.trac.2022.116829. |
[30] |
CHEN F F, GONG Z Y, KELLY B C. Rapid analysis of pharmaceuticals and personal care products in fish plasma micro-aliquots using liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography A, 2015, 1383: 104-111. DOI:10.1016/j.chroma.2015.01.033.
pmid: 25640994 |
[31] | TU X J, DU C P, HE Y C, et al. Determination of bisphenols in beeswax based on sugaring out-assisted liquid-liquid extraction: Method development and application in survey,recycling and degradation studies[J]. Chemosphere, 2024, 351: 141274. DOI:10.1016/j.chemosphere.2024.141274. |
[32] | CEPEDA D S I, CASTAÑEDA H M P, MAYOR A V R, et al. Synthetic peptide purification via solid-phase extraction with gradient elution: A simple, economical, fast, and efficient methodology[J]. Molecules, 2019, 24(7): 1215. DOI:10.3390/molecules24071215. |
[33] | PŁOTKA-WASYLKA J, SZCZEPAŃSKA N, DE LA GUARDIA M, et al. Miniaturized solid-phase extraction techniques[J]. TrAC Trends in Analytical Chemistry, 2015, 73: 19-38. DOI:10.1016/j.trac.2015.04.026. |
[34] | MA J Y, JIANG H L, KANG F S, et al. High-Performance enrichment and sensitive analysis of bisphenol and its analogues in water and milk using a novel Ni-Based cationic Metal-Organic framework[J]. Food Chemistry, 2024, 441: 138267. DOI:10.1016/j.foodchem.2023.138267. |
[35] |
JIAN N G, QIAN L L, WANG C M, et al. Novel nanofibers mat as an efficient, fast and reusable adsorbent for solid phase extraction of non-steroidal anti-inflammatory drugs in environmental water[J]. Journal of Hazardous Materials, 2019, 363: 81-89. DOI:10.1016/j.jhazmat.2018.09.052.
pmid: 30308368 |
[36] | LIANG M, HOU X C, XIAN Y P, et al. Banana-peel-derived magnetic porous carbon as effective adsorbent for the enrichment of six bisphenols from beverage and water samples[J]. Food Chemistry, 2022, 376: 131948. DOI:10.1016/j.foodchem.2021.131948. |
[37] | QIN H L, LIU H, LIU Y K, et al. Recent advances in sample preparation and chromatographic analysis of pharmaceuticals and personal care products in environment[J]. TrAC Trends in Analytical Chemistry, 2023, 164: 117112. DOI:10.1016/j.trac.2023.117112. |
[38] | LIU J, LIU Q, WEI L L, et al. A novel polyhedral oligomeric silsesquioxane-based hybrid monolith as a sorbent for on-line in-tube solid phase microextraction of bisphenols in milk prior to high performance liquid chromatography-ultraviolet detection analysis[J]. Food Chemistry, 2022, 374: 131775. DOI:10.1016/j.foodchem.2021.131775. |
[39] | BAGHERI N, AL LAWATI H A J, AL SHARJI N A, et al. Magnetic zinc based 2D-metal organic framework as an efficient adsorbent for simultaneous determination of fluoroquinolones using 3D printed microchip and liquid chromatography tandem mass spectrometry[J]. Talanta, 2021, 224: 121796. DOI:10.1016/j.talanta.2020.121796. |
[40] | HUANG Y F, LI Y Y, WU Y F, et al. Computer-aided design-based green fabrication of magnetic molecularly imprinted nanoparticles for specific extraction of non-steroidal anti-inflammatory drugs[J]. Chemical Engineering Journal, 2023, 452: 139440. DOI:10.1016/j.cej.2022.139440. |
[41] | LI S H, FENG S W, VAN SCHEPDAEL A, et al. Hollow fiber membrane-protected amino/hydroxyl bifunctional microporous organic network fiber for solid-phase microextraction of bisphenols A, F, S, and triclosan in breast milk and infant formula[J]. Food Chemistry, 2022, 390: 133217. DOI:10.1016/j.foodchem.2022.133217. |
[42] | IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56-58. DOI:10.1038/354056a0. |
[43] |
VALCÁRCEL M, SIMONET B M, CÁRDENAS S, et al. Present and future applications of carbon nanotubes to analytical science[J]. Analytical and Bioanalytical Chemistry, 2005, 382(8): 1783-1790. DOI:10.1007/s00216-005-3373-3.
pmid: 16007437 |
[44] | NI R, WANG Y Z, WEI X X, et al. Magnetic carbon nanotube modified with polymeric deep eutectic solvent for the solid phase extraction of bovine serum albumin[J]. Talanta, 2020, 206: 120215. DOI:10.1016/j.talanta.2019.120215. |
[45] | SOBHI H R, MOHAMMADZADEH F, BEHBAHANI M, et al. Application of a modified MWCNT-based d-μSPE procedure for determination of bisphenols in soft drinks[J]. Food Chemistry, 2022, 385: 132644. DOI:10.1016/j.foodchem.2022.132644. |
[46] | XUE S, MA X F, WANG Y F, et al. Advanced development of three-dimensional covalent organic frameworks: Valency design, functionalization, and applications[J]. Coordination Chemistry Reviews, 2024, 504: 215659. DOI:10.1016/j.ccr.2024.215659. |
[47] |
CÔTÉ A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. DOI:10.1126/science.1120411.
pmid: 16293756 |
[48] | WANG R, CHEN Z L. A covalent organic framework-based magnetic sorbent for solid phase extraction of polycyclic aromatic hydrocarbons,andits hyphenation to HPLC for quantitation[J]. Microchimica Acta, 2017, 184(10): 3867-3874. DOI:10.1007/s00604-017-2408-8. |
[49] | CHEN L X, WU Q, GAO J, et al. Applications of covalent organic frameworks in analytical chemistry[J]. TrAC Trends in Analytical Chemistry, 2019, 113: 182-193. DOI:10.1016/j.trac.2019.01.016. |
[50] |
LIN Z L, JIN Y H, CHEN Y X, et al. Leaf-like ionic covalent organic framework for the highly efficient and selective removal of non-steroidal anti-inflammatory drugs: Adsorption performance and mechanism insights[J]. Journal of Colloid and Interface Science, 2023, 645: 943-955. DOI:10.1016/j.jcis.2023.05.026.
pmid: 37182326 |
[51] | LEE J M, COOPER A I. Advances in conjugated microporous polymers[J]. Chemical Reviews, 2020, 120(4): 2171-2214.DOI:10.1021/acs.chemrev.9b00399. |
[52] | MA J Q, LIU L, WANG X, et al. Development of dispersive solid-phase extraction with polyphenylene conjugated microporous polymers for sensitive determination of phenoxycarboxylic acids in environmental water samples[J]. Journal of Hazardous Materials, 2019, 371: 433-439. DOI:10.1016/j.jhazmat.2019.03.033. |
[53] | WAN N N, CHANG Q Y, HOU F Y, et al. Nanoarchitectured conjugated microporous polymers: State of the art synthetic strategies and opportunities for adsorption science[J]. Chemistry of Materials, 2022, 34(17): 7598-7619. DOI:10.1021/acs.chemmater.2c00999. |
[54] | SUN M, FENG J Q, FENG Y, et al. Core-shellsilica@pyridyl conjugated microporous polymer as a stationary phase for high performance liquid chromatography[J]. Analytica Chimica Acta, 2024, 1292: 342258. DOI:10.1016/j.aca.2024.342258. |
[55] | WU Y Z, XIONG J H, WEI S J, et al. Molecularly imprinted polymers by reflux precipitation polymerization for selective solid-phase extraction of quinolone antibiotics from urine[J]. Journal of Chromatography A, 2024, 1714: 464550. DOI:10.1016/j.chroma.2023.464550. |
[56] | GODAYOL A, BESALÚ E, ANTICÓ E, et al. Monitoring of sixteen fragrance allergens and two polycyclicmusks in wastewater treatment plants by solid phase microextraction coupled to gas chromatography[J]. Chemosphere, 2015, 119: 363-370. DOI:10.1016/j.chemosphere.2014.06.072. |
[57] |
WEI F, ZHANG F F, LIAO H, et al. Preparation of novel polydimethylsiloxane solid-phase microextraction film and its application in liquid sample pretreatment[J]. Journal of Separation Science, 2011, 34(3): 331-339. DOI:10.1002/jssc.201000603.
pmid: 21268257 |
[58] | LI J H, DONG R C, WANG X Y, et al. One-pot synthesis of magnetic molecularly imprinted microspheres by RAFT precipitation polymerization for the fast and selective removal of 17β-estradiol[J]. RSC Advances, 2015, 5(14): 10611-10618. DOI:10.1039/C4RA11177J. |
[1] | WANG Yongfeng, YU Jingyuan, ZHANG Hao. Review of the sources, distribution, and health risks of bisphenol compounds in environmental media in China [J]. Shandong Science, 2025, 38(2): 13-27. |
|