Shandong Science ›› 2025, Vol. 38 ›› Issue (2): 41-52.doi: 10.3976/j.issn.1002-4026.20240142
• Overview of Ecological Protection Technologies in the Yellow River Basin • Previous Articles Next Articles
ZHOU Chang1(
), LIANG Heng2, HUANG Lilong3, ZHANG Xiaofei4, WANG Jianing1, SONG Fanyong1, FU Xiaowen1,*(
)
Received:2024-12-06
Published:2025-04-20
Online:2025-04-16
CLC Number:
ZHOU Chang, LIANG Heng, HUANG Lilong, ZHANG Xiaofei, WANG Jianing, SONG Fanyong, FU Xiaowen. Biotechnologies used for the remediation of oil-field soils[J].Shandong Science, 2025, 38(2): 41-52.
| [1] | 魏样. 土壤石油污染的危害及现状分析[J]. 中国资源综合利用, 2020, 38(4): 120-122. DOI:10.3969/j.issn.1008-9500.2020.04.033. |
| [2] | 刘五星. 石油污染土壤的生态风险评价和生物修复[D]. 南京: 中国科学院, 2006. |
| [3] | 岳敏, 谷学新, 邹洪, 等. 多环芳烃的危害与防治[J]. 首都师范大学学报(自然科学版), 2003, 24(3): 40-44. DOI:10.19789/j.1004-9398.2003.03.009. |
| [4] | 杨博, 李娜娜, 陈景辉, 等. 微生物修复石油烃污染土壤研究进展[J]. 西安石油大学学报(自然科学版), 2023, 38(1): 108-119. DOI:10.3969/j.issn.1673-064X.2023.01.013. |
| [5] | 李俊, 胡健, 马文敏, 等. 石油污染土壤修复技术研究进展[J]. 生态学杂志, 2024, 43(8): 2502-2512. DOI:10.13292/j.1000-4890.202408.028. |
| [6] | 潘云飞, 唐正, 彭欣怡, 等. 石油烃污染土壤微生物修复技术研究现状及进展[J]. 化工进展, 2021, 40(8): 4562-4572. DOI:10.16085/j.issn.1000-6613.2020-2013. |
| [7] | 钟磊, 卿晋武, 陈红云, 等. 微生物修复石油烃土壤污染技术研究进展[J]. 生物工程学报, 2021, 37(10): 3636-3652. DOI:10.13345/j.cjb.210115. |
| [8] | 周际海, 袁颖红, 朱志保, 等. 土壤有机污染物生物修复技术研究进展[J]. 生态环境学报, 2015, 24(2): 343-351. DOI:10.16258/j.cnki.1674-5906.2015.02.025. |
| [9] | 叶振城, 苏亦凡, 杨云锋. 基于分子生物学的微生物修复技术在石油污染环境中的应用[J]. 生物工程学报, 2024, 40(3): 739-757. DOI:10.13345/j.cjb.230431. |
| [10] | LV Y F, BAO J F, ZHU L D. A comprehensive review of recent and perspective technologies and challenges for the remediation of oil-contaminated sites[J]. Energy Reports, 2022, 8: 7976-7988. DOI:10.1016/j.egyr.2022.06.034. |
| [11] | 储明, 杨英, 程晓蕾, 等. 水环境中抗生素去除方法的研究进展[J]. 阜阳师范大学学报(自然科学版), 2021, 38(2): 45-50. DOI:10.14096/j.cnki.cn34-1069/n/2096-9341(2021)02-0045-06. |
| [12] | 张腾飞, 黄玉杰, 季蕾, 等. 石油污染土壤生物修复技术研究进展[J]. 山东科学, 2020, 33(5): 106-112. DOI:10.3976/j.issn.1002-4026.2020.05.013. |
| [13] | 秦力斌. 生物修复技术在土壤污染治理上的应用[J]. 绿色环保建材, 2020(2): 68. DOI:10.16767/j.cnki.10-1213/tu.2020.02.051. |
| [14] | LI X K, LI H, QU C. A review of the mechanism of microbial degradation of petroleum pollution[J]. IOP Conference Series: Materials Science and Engineering, 2019, 484: 012060. DOI:10.1088/1757-899x/484/1/012060. |
| [15] | 林海, 陈茜, 李强, 等. 石油污染土壤的生物修复研究进展[J]. 化学与生物工程, 2023, 40(5): 1-8. DOI:10.3969/j.issn.1672-5425.2023.05.001. |
| [16] | 李宝明. 石油污染土壤微生物修复的研究[D]. 北京: 中国农业科学院, 2007. |
| [17] | 安淼, 周琪, 李晖. 土壤污染生物修复的影响因素[J]. 土壤与环境, 2002, 11(4): 397-400. DOI:10.3969/j.issn.1674-5906.2002.04.018. |
| [18] | 吴蔓莉, 张晨, 祁燕云, 等. 生物修复对黄土壤中石油烃的去除作用及影响因素[J]. 农业环境科学学报, 2018, 37(6): 1159-1165. DOI:10.11654/jaes.2017-1549. |
| [19] | CHANDRA S, SHARMA R, SINGH K, et al. Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon[J]. Annals of Microbiology, 2013, 63(2): 417-431. DOI:10.1007/s13213-012-0543-3. |
| [20] | 樊鑫, 刘璐. 生物修复技术在石油污染治理中的应用研究进展[J]. 现代化工, 2021, 41(12): 64-68. DOI:10.16606/j.cnki.issn0253-4320.2021.12.013. |
| [21] | 杜卫东, 万云洋, 钟宁宁, 等. 土壤和沉积物石油污染现状[J]. 武汉大学学报(理学版), 2011, 57(4): 311-322. DOI:10.14188/j.1671-8836.2011.04.005. |
| [22] | 王庆仁, 刘秀梅, 崔岩山, 等. 土壤与水体有机污染的生物修复及其应用研究进展[J]. 生态学报, 2001, 21(1): 159-163. DOI:10.3321/j.issn:1000-0933.2001.01.026. |
| [23] | 吴洁婷, 赵若帆, 包红旭, 等. 鼠李糖脂强化多环芳烃微生物修复的研究进展[J]. 生态环境学报, 2022, 31(1): 205-214. DOI:10.16258/j.cnki.1674-5906.2022.01.023. |
| [24] | PANDOLFO E, BARRA CARACCIOLO A, ROLANDO L. Recent advances in bacterial degradation of hydrocarbons[J]. Water, 2023, 15(2): 375. DOI:10.3390/w15020375. |
| [25] | LI Q Q, LI J B, JIANG L F, et al. Diversity and structure of phenanthrene degrading bacterial communities associated with fungal bioremediation in petroleum contaminated soil[J]. Journal of Hazardous Materials, 2021, 403: 123895. DOI:10.1016/j.jhazmat.2020.123895. |
| [26] | 孙娟, 王宁, 陈宏坤, 等. 石油污染土壤微生物群落分布特征[J]. 石油学报(石油加工), 2021, 37(2): 372-383. DOI:10.3969/j.issn.1001-8719.2021.02.016. |
| [27] | FAN C Y, KRISHNAMURTHY S. Enzymes for enhancing bioremediation of petroleum-contaminated soils: A brief review[J]. Journal of the Air & Waste ManagementAssociation, 1995, 45(6): 453-460. DOI:10.1080/10473289.1995.10467375. |
| [28] | 李晓楼. 石油污染土壤土著微生物强化修复研究[J]. 西安文理学院学报(自然科学版), 2015, 18(1): 39-42. DOI:10.3969/j.issn.1673-1409(l).2014.08.009. |
| [29] | 屠明明, 王秋玉. 石油污染土壤的生物刺激和生物强化修复[J]. 中国生物工程杂志, 2009, 29(8): 129-134. |
| [30] | 曹斐姝, 陈婷婷, 梁家宇, 等. 石化场地污染土壤生物修复技术研究[J]. 化学与生物工程, 2022, 39(11): 47-54. DOI:10.3969/j.issn.1672-5425.2022.11.010. |
| [31] |
SARKAR J, KAZY S K, GUPTA A, et al. Biostimulation of indigenous microbial community for bioremediation of petroleum refinery sludge[J]. Frontiers in Microbiology, 2016, 7: 1407. DOI:10.3389/fmicb.2016.01407.
pmid: 27708623 |
| [32] | 殷鹂婷, 韩书新, 刁志龙, 等. 生物通风法修复石油烃污染土壤[J]. 化工环保, 2023, 43(6): 805-812. DOI:10.3969/j.issn.1006-1878.2023.06.013. |
| [33] | 武秀琦. 西北黄土地区石油污染土壤生物修复影响因素研究[D]. 西安: 西安建筑科技大学, 2007. |
| [34] |
SAEED M, ILYAS N, JAYACHANDRAN K, et al. Biostimulation potential of biochar for remediating the crude oil contaminated soil and plant growth[J]. Saudi Journal of Biological Sciences, 2021, 28(5): 2667-2676. DOI:10.1016/j.sjbs.2021.03.044.
pmid: 34025151 |
| [35] | WU M L, MA C, WANG D, et al. Nutrient drip irrigation for refractory hydrocarbon removal and microbial community shift in a historically petroleum-contaminated soil[J]. Science of the Total Environment, 2020, 713: 136331. DOI:10.1016/j.scitotenv.2019.136331. |
| [36] | ZHAO D F, LIU C S, LIU L H, et al. Selection of functional consortium for crude oil-contaminated soil remediation[J]. International Biodeterioration & Biodegradation, 2011, 65(8): 1244-1248. DOI:10.1016/j.ibiod.2011.07.008. |
| [37] | 王建刚, 王婷, 卞卫国, 等. 生物刺激法对石油污染荒漠土的修复效应[J]. 环境化学, 2014, 33(12): 2214-2215. DOI:10.7524/j.issn.0254-6108.2014.12.024. |
| [38] | 郑金秀, 彭祺, 张甲耀, 等. 优势降解菌群生物强化修复石油污染土壤[J]. 农业环境科学学报, 2006, 25(5): 1212-1216. DOI:10.3321/j.issn:1672-2043.2006.05.024. |
| [39] | 王悦明, 王继富, 李鑫, 等. 石油污染土壤微生物修复技术研究进展[J]. 环境工程, 2014, 32(8): 157-161. DOI:10.13205/j.hjgc.201408037. |
| [40] | 高鹏飞, 刘虹, 丛唯一, 等. 石油烃降解菌株的复配及其降解特性研究[J]. 安全与环境工程, 2019, 26(6): 108-113. DOI:10.13578/j.cnki.issn.1671-1556.2019.06.016. |
| [41] | 刘虹, 张朋朋, 刘娜, 等. 三种细菌降解直链烷烃的效果及降解动力学研究[J]. 安全与环境工程, 2017, 24(3): 66-70. DOI:10.13578/j.cnki.issn.1671-1556.2017.03.012. |
| [42] | YUAN X Y, ZHANG X Y, CHEN X P, et al. Synergistic degradation of crude oil by indigenous bacterial consortium and exogenous fungus Scedosporium boydii[J]. Bioresource Technology, 2018, 264: 190-197. DOI:10.1016/j.biortech.2018.05.072. |
| [43] | MUTHUKUMAR B, SURYA S, SIVAKUMAR K, et al. Influence of bioaugmentation in crude oil contaminated soil by Pseudomonas species on the removal of total petroleum hydrocarbon[J]. Chemosphere, 2023, 310: 136826. DOI:10.1016/j.chemosphere.2022.136826. |
| [44] | 李瑜婷. 基于植物-微生物联合机制的PAHs污染土壤生物修复过程及共存微塑料的影响[D]. 济南: 齐鲁工业大学, 2023. |
| [45] | 吴蔓莉, 李可欣, 侯爽爽, 等. 贫养分低有机质黄绵土中石油烃的生物去除特性及菌群结构变化[J]. 环境科学研究, 2021, 34(8): 1961-1970. DOI:10.13198/j.issn.1001-6929.2021.04.13. |
| [46] | 慕庆峰, 于立红, 张涛, 等. 油污土壤修复微生物的筛选及其影响因素[J]. 水土保持通报, 2018, 38(5): 330-335. |
| [47] | 徐佰青, 李平平, 王山榕, 等. 植物修复石油污染土壤的研究进展[J]. 当代化工, 2020, 49(7): 1527-1531. DOI:10.3969/j.issn.1671-0460.2020.07.063. |
| [48] |
NIKOLOPOULOU M, PASADAKIS N, KALOGERAKIS N. Evaluation of autochthonous bioaugmentation and biostimulation during microcosm-simulated oil spills[J]. Marine Pollution Bulletin, 2013, 72(1): 165-173. DOI:10.1016/j.marpolbul.2013.04.007.
pmid: 23660443 |
| [49] | YAMAN C. Performance and kinetics of bioaugmentation,biostimulation, and natural attenuation processes for bioremediation of crude oil-contaminated soils[J]. Processes, 2020, 8(8): 883. DOI:10.3390/pr8080883. |
| [50] | 魏树和, 周启星, Pavel V K, 等. 有机污染环境植物修复技术[J]. 生态学杂志, 2006, 25(6): 716-721. |
| [51] | 吴凡, 刘训理. 石油污染土壤的生物修复研究进展[J]. 土壤, 2007, 39(5): 701-707. DOI:10.3321/j.issn:0253-9829.2007.05.005. |
| [52] | 彭胜巍, 周启星. 持久性有机污染土壤的植物修复及其机理研究进展[J]. 生态学杂志, 2008, 27(3): 469-475. |
| [53] | 施奇, 卢杰. 根系分泌物的影响因素及对植物的影响研究概况[J]. 农业与技术, 2023, 43(11): 13-17. DOI:10.19754/j.nyyjs.20230615004. |
| [54] | 李先梅, 肖易, 吴芸紫, 等. 华北油田石油污染土壤的修复植物筛选[J]. 环境科学与技术, 2015, 38(6): 14-19. DOI:10.3969/j.issn.1003-6504.2015.06.003. |
| [55] | 邓开良, 韦星辉. 土壤石油污染中植物的修复效应作用研究[J]. 绿色科技, 2023, 25(2): 117-121. DOI:10.16663/j.cnki.lskj.2023.02.001. |
| [56] | DICKSON U J, COFFEY M, GEORGE MORTIMER R J, et al. Investigating the potential of sunflower species, fermented palm wine and Pleurotus ostreatus for treatment of petroleum-contaminated soil[J]. Chemosphere, 2020, 240: 124881. DOI:10.1016/j.chemosphere.2019.124881. |
| [57] | 高世珍, 赵兴茹, 崔世茂, 等. 典型持久性有机污染物在翅碱蓬中的分布特征[J]. 环境科学, 2010, 31(10): 2456-2461. DOI:10.13227/j.hjkx.2010.10.033. |
| [58] | 黄建, 田长彦, 卞卫国, 等. 4种盐生植物生长对土壤石油污染的响应[J]. 干旱区研究, 2014, 31(1): 100-104. |
| [59] | ZHANG Z N, ZHOU Q X, PENG S W, et al. Remediation of petroleum contaminated soils by joint action of Pharbitis nil L. and its microbial community[J]. Science of the Total Environment, 2010, 408(22): 5600-5605. DOI:10.1016/j.scitotenv.2010.08.003. |
| [60] | 郑澜. 石油污染土壤修复技术的研究现状[J]. 化工管理, 2023(27): 58-61. DOI:10.19900/j.cnki.ISSN1008-4800.2023.27.016. |
| [61] |
SELVAKUMAR R, RAMADOSS G, MENON M P, et al. Challenges and complexities in remediation of uranium contaminated soils: A review[J]. Journal of Environmental Radioactivity, 2018, 192: 592-603. DOI:10.1016/j.jenvrad.2018.02.018.
pmid: 29525111 |
| [62] | ZHAO L, LYU C, LI Y. Analysis of factors influencing plant-microbe combined remediation of soil contaminated by polycyclic aromatic hydrocarbons[J]. Sustainability, 2021, 13(19): 10695. DOI:10.3390/su131910695. |
| [63] | KHODAVERDILOO H, HAN F, TAGHLIDABAD R H, et al. Potentially toxic element contamination of arid and semi-arid soils and its phytoremediation[J]. Arid Land Research and Management, 2020, 34: 361-391. DOI:10.1080/15324982.2020.1746707. |
| [64] | 刘玲, 谢影, 汪承润, 等. 植物修复多环芳烃(PAHs)研究进展[J]. 江苏农业科学, 2012, 40(3): 309-312. DOI:10.15889/j.issn.1002-1302.2012.03.025. |
| [65] | GUTIÉRREZ-GINÉS M J, HERNÁNDEZ A J, PÉREZ-LEBLIC M I, et al. Phytoremediation of soils co-contaminated by organic compounds and heavy metals: Bioassays with Lupinus luteus L. and associated endophytic bacteria[J]. Journal of Environmental Management, 2014, 143: 197-207. DOI:10.1016/j.jenvman.2014.04.028. |
| [66] | 宋清梅, 吴文成. 浅析污染土壤的植物-微生物联合修复机理及研究现状[C]// 中国环境科学学会. 2015年中国环境科学学会学术年会论文集. 深圳: 中国环境科学学会, 2015: 6. |
| [67] | 沈源源. 多环芳烃污染土壤的植物:微生物联合修复效应[D]. 南京: 南京农业大学, 2010. |
| [68] | 吴辉, 郑师章. 根分泌物及其生态效应[J]. 生态学杂志, 1992, 11(6): 44-47. |
| [69] | 韩博远, 张闻, 胡芳雨, 等. 模拟及实际根系分泌物对芘污染土壤微生物群落的影响[J]. 环境科学, 2022, 43(2): 1077-1088. DOI:10.13227/j.hjkx.202103204. |
| [70] |
EZE M O, AMUJI C F. Elucidating the significant roles of root exudates in organic pollutant biotransformation within the rhizosphere[J]. Scientific Reports, 2024, 14(1): 2359. DOI:10.1038/s41598-024-53027-x.
pmid: 38286879 |
| [71] | PAWLIK M, CANIA B, THIJS S, et al. Hydrocarbon degradation potential and plant growth-promoting activity of culturable endophytic bacteria of Lotus corniculatus and Oenothera biennis from a long-term polluted site[J]. Environmental Science and Pollution Research International, 2017, 24(24): 19640-19652. DOI:10.1007/s11356-017-9496-1. |
| [72] | 刘鑫, 黄兴如, 张晓霞, 等. 高浓度多环芳烃污染土壤的微生物-植物联合修复技术研究[J]. 南京农业大学学报, 2017, 40(4): 632-640. DOI:10.7685/jnau.201606036. |
| [73] |
XUN F F, XIE B M, LIU S S, et al. Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation[J]. Environmental Science and Pollution Research International, 2015, 22(1): 598-608. DOI:10.1007/s11356-014-3396-4.
pmid: 25091168 |
| [74] | BANKS M K, MALLEDE H, RATHBONE K. Rhizosphere microbial characterization in petroleum-contaminated soil[J]. Soil and Sediment Contamination, 2003, 12(3): 371-385. DOI:10.1080/713610978. |
| [75] | 黄俊伟, 闯绍闯, 陈凯, 等. 有机污染物的植物-微生物联合修复技术研究进展[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 757-765. DOI:10.3785/j.issn.1008-9209.2017.05.161. |
| [76] | 申春妮, 曹小方, 李腾, 等. 植物-微生物联合修复柴油污染土试验研究[J]. 土木与环境工程学报(中英文), 2023, 45(3): 145-153. DOI:10.11835/j.issn.2096-6717.2022.018. |
| [77] | KIAMARSI Z, KAFI M, SOLEIMANI M, et al. Conjunction of Vetiveria zizanioides L. and oil-degrading bacteria as a promising technique for remediation of crude oil-contaminated soils[J]. Journal of Cleaner Production, 2020, 253: 119719. DOI:10.1016/j.jclepro.2019.119719. |
| [78] | 曹雨欣, 周晓琴, 武娟, 等. 解烃菌BD-2产表面活性剂及其稳定性研究[J]. 环境科学与技术, 2024, 47(10): 69-76.. DOI:10.19672/j.cnki.1003-6504.0811.24.338. |
| [79] | 廉梅花, 曾祥峰, 马阳阳, 等. 表面活性剂强化生物修复重金属和多环芳烃污染土壤研究进展[J]. 生态学杂志, 2024, 43(9): 2813-2823. DOI:10.13292/j.1000-4890.202409.030. |
| [80] | 王晓旭, 孙丽娜, 郑学昊, 等. 表面活性剂强化微生物修复DDTs-PAHs复合污染农田土壤影响研究[J]. 生态环境学报, 2017, 26(3): 486-492. DOI:10.16258/j.cnki.1674-5906.2017.03.018. |
| [81] |
KUYUKINA M S, IVSHINA I B, MAKAROV S O, et al. Effect of biosurfactants on crude oil desorption and mobilization in a soil system[J]. Environment International, 2005, 31(2): 155-161. DOI:10.1016/j.envint.2004.09.009.
pmid: 15661276 |
| [82] | SAJNA K V, SUKUMARAN R K, GOTTUMUKKALA L D, et al. Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth[J]. Bioresource Technology, 2015, 191: 133-139. DOI:10.1016/j.biortech.2015.04.126. |
| [83] |
LIU Y, ZENG G M, ZHONG H, et al. Effect of rhamnolipid solubilization on hexadecane bioavailability: Enhancement or reduction?[J]. Journal of Hazardous Materials, 2017, 322: 394-401. DOI:10.1016/j.jhazmat.2016.10.025.
pmid: 27773441 |
| [84] | PATOWARY R, PATOWARY K, KALITA M C, et al. Application of biosurfactant for enhancement of bioremediation process of crude oil contaminated soil[J]. International Biodeterioration & Biodegradation, 2018, 129: 50-60. DOI:10.1016/j.ibiod.2018.01.004. |
| [85] | LAI C C, HUANG Y C, WEI Y H, et al. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 609-614. DOI:10.1016/j.jhazmat.2009.01.017. |
| [86] | 张洁, 靳静. 鼠李糖脂去除多环芳烃、石油烃及重金属的应用研究进展[J]. 广州化工, 2023, 51(20): 10-14.DOI:10.3969/j.issn.1001-9677.2023.20.004. |
| [87] | 邹春景, 傅晓文, 马荣辉, 等. 石油污染土壤的生物-化学联合修复技术研究进展[J]. 现代化工, 2023, 43(10): 36-40. DOI:10.16606/j.cnki.issn0253-4320.2023.10.007. |
| [88] |
LU M, ZHANG Z Z, QIAO W, et al. Remediation of petroleum-contaminated soil after composting by sequential treatment with Fenton-like oxidation and biodegradation[J]. Bioresource Technology, 2010, 101(7): 2106-2113. DOI:10.1016/j.biortech.2009.11.002.
pmid: 19942431 |
| [89] | LI X, LUO T, WANG Y X, et al. Improving the degradation of benzo[a]Pyrene and soil biodegradability by enhanced ozonation with mechanical agitation[J]. Chemical Engineering Journal, 2021, 423: 130056. DOI:10.1016/j.cej.2021.130056. |
| [90] | LI L, ZHANG Z N, WANG Y H, et al. Efficient removal of heavily oil-contaminated soil using a combination of Fenton pre-oxidation withbiostimulated iron and bioremediation[J]. Journal of Environmental Management, 2022, 308: 114590. DOI:10.1016/j.jenvman.2022.114590. |
| [91] | GOU Y L, YANG S C, CHENG Y J, et al. Enhanced anoxic biodegradation of polycyclic aromatic hydrocarbons (PAHs) in aged soil pretreated by hydrogen peroxide[J]. Chemical Engineering Journal, 2019, 356: 524-533. DOI:10.1016/j.cej.2018.09.059. |
| [92] | FANAEI F, MOUSSAVI G, SHEKOOHIYAN S. Enhanced bioremediation of oil-contaminated soil in a slurry bioreactor by H2O2-stimulation of oil-degrading/biosurfactant-generating bacteria: Performance optimization and bacterial metagenomics[J]. Biodegradation, 2023, 34(1): 83-101. DOI:10.1007/s10532-022-10008-z. |
| [93] |
LIAO X Y, WU Z Y, LI Y, et al. Effect of various chemical oxidation reagents on soil indigenous microbial diversity in remediation of soil contaminated by PAHs[J]. Chemosphere, 2019, 226: 483-491. DOI:10.1016/j.chemosphere.2019.03.126.
pmid: 30951943 |
| [94] | WEI K H, MA J, XI B D, et al. Recent progress on in situ chemical oxidation for the remediation of petroleum contaminated soil and groundwater[J]. Journal of Hazardous Materials, 2022, 432: 128738. DOI:10.1016/j.jhazmat.2022.128738. |
| [95] | 许科伟, 顾磊, 郑旭莹, 等. 化学氧化强化生物堆修复石油污染土壤研究[J]. 应用技术学报, 2021, 21(4): 356-361. DOI:10.3969/j.issn.1004-3810.2021.04.009. |
| [96] | LEAR G, HARBOTTLE M J, VAN DER GAST C J, et al. The effect of electrokinetics on soil microbial communities[J]. Soil Biology and Biochemistry, 2004, 36(11): 1751-1760. DOI:10.1016/j.soilbio.2004.04.032. |
| [97] | WICK L Y, SHI L, HARMS H. Electro-bioremediation of hydrophobic organic soil-contaminants: A review of fundamental interactions[J]. Electrochimica Acta, 2007, 52(10): 3441-3448. DOI:10.1016/j.electacta.2006.03.117. |
| [98] | 马永松, 李琋, 罗廷, 等. 电动微生物法修复石油和镍污染土壤的研究[J]. 环境科学与技术, 2019, 42(8): 201-208. DOI:10.19672/j.cnki.1003-6504.2019.08.029. |
| [99] | 李婷婷, 吴迪, 辛亮, 等. 石油污染土壤电动-微生物修复技术研究[J]. 应用技术学报, 2021, 21(4): 362-368. DOI:10.3969/j.issn.1004-3810.2021.04.010. |
| [100] | 赵敏, 杨琴, 周立辉, 等. 电场强化下微生物降解油污土壤的研究[J]. 山西大学学报(自然科学版), 2015, 38(4): 726-730. DOI:10.13451/j.cnki.shanxi.univ(nat.sci.).2015.04.030. |
| [101] | LI F M, GUO S H, WANG S, et al. Changes of microbial community and activity under different electric fields during electro-bioremediation of PAH-contaminated soil[J]. Chemosphere, 2020, 254: 126880. DOI:10.1016/j.chemosphere.2020.126880. |
| [102] | 高丽军, 陈韬, 马颐琳, 等. 电动及其联合技术修复有机污染土壤的研究进展[J]. 现代化工, 2024, 44(12): 39-43. DOI:10.16606/j.cnki.issn0253-4320.2024.12.007. |
| [103] | 刘利军, 李颖异, 刘永杰, 等. 表面活性剂强化植物-微生物联合修复双对氯苯基三氯乙烷污染土壤研究[J]. 环境污染与防治, 2019, 41(10): 1193-1197. DOI:10.15985/j.cnki.1001-3865.2019.10.012. |
| [104] | NI H W, ZHOU W J, ZHU L Z. Enhancing plant-microbe associated bioremediation of phenanthrene and Pyrene contaminated soil by SDBS-Tween 80 mixed surfactants[J]. Journal of Environmental Sciences, 2014, 26(5): 1071-1079. DOI:10.1016/S1001-0742(13)60535-5. |
| [105] | 姚丹丹, 王辉, 田坤, 等. 土壤多环芳烃污染生物表面活性剂强化修复的研究进展[J]. 应用化工, 2023, 52(1): 164-170. DOI:10.3969/j.issn.1671-3206.2023.01.032. |
| [106] | 石扬, 陈沅江. 我国污染土壤生物修复技术研究现状及发展展望[J]. 世界科技研究与发展, 2017, 39(1): 24-32. DOI:10.16507/j.issn.1006-6055.2017.02.002. |
| [107] | 谢萌. 钢铁场地有机物污染的植物-微生物及表面活性剂强化修复技术[D]. 济南: 山东大学, 2021. DOI:10.27272/d.cnki.gshdu.2021.004072. |
| [108] | 牛秋雅, 曾光明, 牛一乐, 等. 臭氧预氧化-堆肥去除污染土壤中菲实验研究[J]. 环境科学学报, 2009, 29(11): 2352-2358. DOI:10.13671/j.hjkxxb.2009.11.014. |
| [109] | 孟欣, 李刚, 高鹏, 等. 高羊茅对电动-微生物修复石油污染土壤的影响[J]. 农业环境科学学报, 2020, 39(7): 1532-1539. DOI:10.11654/jaes.2019-1438. |
| [1] | MA Guangxiang, JU Tiantian, XIA Yanzhao, CHEN Linlin, SONG Wenyang, LIU Yue. Effects of different coagulants on the anaerobic biodegradation of microcystin-LR in water treatment [J]. Shandong Science, 2025, 38(5): 123-130. |
| [2] | WEI Yan-Li, LI Ji-Shun, HU Jin-Dong, ZHANG Guang-Zhi, LI Hong-Mei, YANG He-Tong. Isolation and degradation characteristics of an abamectin-degrading and thermophilic bacterial strain AZ11 [J]. J4, 2013, 26(4): 16-19. |
| [3] | HUANG Yu-Jie, ZHANG Xin-Jian, REN Yan, LI Ji-Shun, ZHANG Guang-Zhi, YANG He-Tong. Isolation and identification of a carbendazim-degrading strain and its degrading characteristics [J]. J4, 2011, 24(2): 28-34. |
|
||
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits third parties to freely share (i.e., copy and redistribute the material in any medium or format) and adapt (i.e., remix, transform, or build upon the material) the articles published in this journal, provided that appropriate credit is given, a link to the license is provided, and any changes made are indicated. The material may not be used for commercial purposes. For details of the CC BY-NC 4.0 license, please visit: https://creativecommons.org/licenses/by-nc/4.0