Shandong Science ›› 2025, Vol. 38 ›› Issue (2): 28-40.doi: 10.3976/j.issn.1002-4026.20240114
• Overview of Ecological Protection Technologies in the Yellow River Basin • Previous Articles Next Articles
MA Jinyan1(
), ZHAO Rusong2,*(
)
Received:2024-10-08
Published:2025-04-20
Online:2025-04-16
CLC Number:
MA Jinyan, ZHAO Rusong. Current status of contamination of environmental and food samples with pharmaceutical and personal care products and sample pretreatment analytical techniques[J].Shandong Science, 2025, 38(2): 28-40.
Table 1
Concentrations of BPs in different media"
| BPs污染物 | 来源 | 年份 | 质量浓度/(ng·L-1) | 参考文献 |
|---|---|---|---|---|
| 广元市河流 | 2021 | 12.51~186.76 | [ | |
| 双酚A | 珠江广州河段 | 2022 | 85.40~124.00 | [ |
| 城市水源(广元市) | 2020—2021 | 32.24~187.09 | [ | |
| 双酚F | 珠江广州河段 | 2022 | 29.30~62.10 | [ |
| 双酚S | 白龙江(丰水期) | 2020 | N.D.~1.25 | [ |
| 白龙江(丰水期) | 2021 | N.D.~1.78 | [ | |
| 市售鱼类 | 2018 | N.D.~28.60 | [ | |
| 市售鱼类 | 2022 | 0.10~62.48 | [ | |
| 双酚B | 塑料包装食品及饮品 | 2021 | N.D.~29.70 | [ |
Table 2
Concentrations of NSAIDs in different media"
| NSAIDs污染物 | 来源 | 年份 | 质量浓度/(ng·L-1) | 参考文献 |
|---|---|---|---|---|
| 双氯芬酸钠 | 中国黄海及东海 | 2019 | N.D.~12.41 | [ |
| 宁夏第三排水沟 | 2021 | N.D.~184.72 | [ | |
| 北极地区 | 2022 | 20.00~180.00 | [ | |
| 萘普生 | 中国黄海及东海 | 2019 | 22.27~271.30 | [ |
| 北极地区 | 2022 | 106.00~3 150 | [ | |
| 布洛芬 | 中国黄海及东海 | 2019 | N.D.~239.00 | [ |
| 宁夏第三排水沟 | 2021 | N.D.~236.43 | [ | |
| 对乙酰氨基酚 | 宁夏第三排水沟 | 2021 | N.D.~40.85 | [ |
Table 3
Advantages and disadvantages of sample pretreatment techniques"
| 类型 | 名称 | 优点 | 缺点 | 参考文献 |
|---|---|---|---|---|
| 传统样品前 处理技术 | 液液萃取(LLE) | 操作简单、要求 及成本低 | 有机溶剂消耗大、富集倍数小、 提取工作量大 | [ |
| 新型样品前 处理技术 | 柱固相萃取(CSPE) | 有机溶剂消耗量少、 富集度高 | 样品质量要求高、 操作要求高 | [ |
| 磁固相萃取(MSPE) | 操作简单、分离速度快、 操作时间短 | 萃取材料需带磁性,萃取 过程的平衡时间通常较长 | [ | |
| 固相微萃取(SMPE) | 快速高效、灵敏度高、 环保经济 | 萃取容量有限、萃取头 需定期更换 | [ |
Table 4
Application of new adsorbent materials in sample pretreatment"
| 材料 | 名称 | 特点 | 分析物 | 前处理技术 | 仪器 | 回收率/% | 检出限 | 参考文献 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 碳纳米管 | M-CNT@ PDE | 聚合物低共 熔溶剂修饰 | 牛血清 白蛋白 | 磁固相 萃取 | 紫外可见 光度计 | 2.67 μg/mL | [ | ||||||||||
| 共价有机 骨架材料 | MI-COF | 产生印迹空腔, 孔隙率高 | 氟喹诺 酮药物 | 固相萃取 | 高效液 相色谱仪 | 92~113 | 0.32~0.48 μg/L | [ | |||||||||
| COF-LZU1@ PEI@Fe3O4 | 聚乙烯亚 胺功能化 | 多环芳烃 | 磁固相萃取 | 高效液 相色谱仪 | 90.9~107.8 | 0.2~20 pg/mL | [ | ||||||||||
| 共轭微孔 聚合物 | PP-CMP | 聚亚苯基 功能化 | 苯氧羧酸 除草剂 | 分散固相 萃取 | 气相色谱仪 | 86.9~101.3 | 0.55~3.84 ng/L | [ | |||||||||
| CMP | 三苯胺卟啉 基功能化 | 邻苯二 甲酸酯 | 固相微 萃取 | 气相色谱仪 | 80~120 | 0.01~3.0 μg/L | [ | ||||||||||
| 金属有机 骨架材料 | Zn-MOF | 二维MOF, 比表面积大 | 环丙沙星、 氧氟沙星以 及诺氟沙星 | 固相萃取 | 高效液相 色谱-串联 质谱仪 | 0.009~0.016 ng/mL | [ | ||||||||||
| iMOF-Ni | 镍基阳离子 | 双酚类 污染物 | 固相萃取 | 高效液 相色谱仪 | 72.2~96.6 | 0.07~0.16 ng/mL | [ | ||||||||||
| 纳米纤 维毡 | PANI/ PanNFsM | 核壳型纳 米纤维毡, 比表面积大 | 非甾体 抗炎药 | 固相萃取 | 高相液相 色谱-串联 质谱仪 | 85.0~99.7 | [ | ||||||||||
| 纳米多孔 碳材料 | MMIMs | 比表面积大, 孔隙率高 | 双酚类 污染物 | 磁固相 萃取 | 高效液相色 谱-四级杆- 轨道阱高分 辨质谱仪 | 71.9~108.4 | 0.03~0.30 μg/L | [ |
| [1] | XU Y, LIU T J, ZHANG Y, et al. Advances in technologies for pharmaceuticals and personal care products removal[J]. Journal of Materials Chemistry A, 2017, 5(24): 12001-12014. DOI:10.1039/C7TA03698A. |
| [2] | BÜNING B, RECHTENBACH D, BEHRENDT J, et al. Removal of emerging micropollutants from wastewater by nanofiltration and biofilm reactor (MicroStop)[J]. Environmental Progress & Sustainable Energy, 2021, 40(3): e13587. DOI:10.1002/ep.13587. |
| [3] | PRIYA A K, GNANASEKARAN L, RAJENDRAN S, et al. Occurrences and removal of pharmaceutical and personal care products from aquatic systems using advanced treatment: A review[J]. Environmental Research, 2022, 204: 112298. DOI:10.1016/j.envres.2021.112298. |
| [4] | CASTILLO-ZACARÍAS C, BAROCIO M E, HIDALGO-VÁZQUEZ E, et al. Antidepressant drugs as emerging contaminants: Occurrence in urban and non-urban waters and analytical methods for their detection[J]. Science of the Total Environment, 2021, 757: 143722. DOI:10.1016/j.scitotenv.2020.143722. |
| [5] | KUMAR M, SRIDHARAN S, SAWARKAR A D, et al. Current research trends on emerging contaminants pharmaceutical and personal care products (PPCPs): A comprehensive review[J]. Science of the Total Environment, 2023, 859: 160031.DOI:10.1016/j.scitotenv.2022.160031. |
| [6] | KUMAR M, CHEN H Y, SARSAIYA S, et al. Current research trends on micro- and nano-plastics as an emerging threat to global environment: A review[J]. Journal of Hazardous Materials, 2021, 409: 124967.DOI:10.1016/j.jhazmat.2020.124967. |
| [7] | PAROLINI M. Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review[J]. Science of the Total Environment, 2020, 740: 140043. DOI:10.1016/j.scitotenv.2020.140043. |
| [8] | ARCILA-SAENZ J, HINCAPIÉ-MEJÍA G, LONDOÑO-CAÑAS Y A, et al. Role of the hydrolytic-acidogenic phase on the removal of bisphenol A and sildenafil during anaerobic treatment[J]. Environmental Monitoring and Assessment, 2023, 195(12): 1552. DOI:10.1007/s10661-023-12009-8. |
| [9] |
DODGEN L K, LI J, WU X, et al. Transformation and removal pathways of four common PPCP/EDCs in soil[J]. Environmental Pollution, 2014, 193: 29-36. DOI:10.1016/j.envpol.2014.06.002.
pmid: 24997388 |
| [10] | HERNANDEZ-RUIZ S, ABRELL L, WICKRAMASEKARA S, et al. Quantifying PPCP interaction with dissolved organic matter in aqueous solution: Combined use of fluorescence quenching and tandem mass spectrometry[J]. Water Research, 2012, 46(4): 943-954. DOI:10.1016/j.watres.2011.11.061. |
| [11] | LIAO C Y, LIU F, ALOMIRAH H, et al. Bisphenol S in urine from the United States and seven Asian countries: Occurrence and human exposures[J]. Environmental Science & Technology, 2012, 46(12): 6860-6866. DOI:10.1021/es301334j. |
| [12] |
ZHU R, ZHAO W H, ZHAI M J, et al. Molecularly imprinted layer-coated silica nanoparticles for selective solid-phase extraction of bisphenol A from chemical cleansing and cosmetics samples[J]. Analytica Chimica Acta, 2010, 658(2): 209-216. DOI:10.1016/j.aca.2009.11.008.
pmid: 20103097 |
| [13] | 赵斌, 谭学蓉, 薛鸣, 等. 广元市河流中双酚类物质的污染状况及分布特征[J]. 环境监控与预警, 2023, 15(6): 17-23. DOI:10.3969/j.issn.1674-6732.2023.06.003. |
| [14] | 梅雨贤, 刘悦弘, 李楠, 等. 珠江广州河段、河涌及管道径流中双酚类化合物的污染特征与生态风险[J]. 华南师范大学学报(自然科学版), 2024, 56(3): 15-24. DOI:10.6054/j.jscnun.2024033. |
| [15] | 许东海, 谭学蓉, 赵斌, 等. 2020—2021年广元市主城区水源水和饮用水中双酚类化合物检测分析[J]. 预防医学情报杂志, 2023, 39(2): 219-227. |
| [16] | 庄睿, 胡婧, 朱颖, 等. 市售鱼类中双酚A、双酚S污染水平及风险评估[J]. 食品安全导刊, 2024(24): 58-62. |
| [17] | 谭学蓉, 许东海, 龙洋, 等. 四川省市售食品中双酚A和双酚S检测结果分析[J]. 预防医学情报杂志, 2018, 34(12): 1507-1512. |
| [18] | 孟伟, 曹艳秋, 王开清, 等. 塑料包装食品及饮品检测中双酚类标准物质的应用[J]. 食品安全质量检测学报, 2022, 13(6): 1791-1800. DOI:10.19812/j.cnki.jfsq11-5956/ts.2022.06.020. |
| [19] |
TIŠLER T, KREL A, GERŽELJ U, et al. Hazard identification and risk characterization of bisphenols A, F and AF to aquatic organisms[J]. Environmental Pollution, 2016, 212: 472-479. DOI:10.1016/j.envpol.2016.02.045.
pmid: 26957022 |
| [20] |
SPERANZA A, CROSTI P, MALERBA M, et al. The environmental endocrine disruptor, bisphenol A, affects germination, elicits stress response and alters steroid hormone production in kiwifruit pollen[J]. Plant Biology, 2011, 13(1): 209-217. DOI:10.1111/j.1438-8677.2010.00330.x.
pmid: 21143743 |
| [21] | ADAMAKIS I S, PANTERIS E, CHERIANIDOU A, et al. Effects of bisphenol A on the microtubule arrays in root meristematic cells of Pisum sativum L[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2013, 750(1/2): 111-120. DOI:10.1016/j.mrgentox.2012.10.012. |
| [22] |
OUYANG W M, LUO W J, ZHANG D Y, et al. PI-3K/Akt pathway-dependent cyclin D1 expression is responsible for arsenite-induced human keratinocyte transformation[J]. Environmental Health Perspectives, 2008, 116(1): 1-6. DOI:10.1289/ehp.10403.
pmid: 18197291 |
| [23] | RANJAN N, SINGH P K, MAURYA N S. Pharmaceuticals in water as emerging pollutants for river health: A critical review under Indian conditions[J]. Ecotoxicology and Environmental Safety, 2022, 247: 114220. DOI:10.1016/j.ecoenv.2022.114220. |
| [24] | HUYNH N C, NGUYEN T T T, NGUYEN D T C, et al. Occurrence, toxicity, impact and removal of selected non-steroidal anti-inflammatory drugs (NSAIDs): A review[J]. Science of the Total Environment, 2023, 898: 165317. DOI:10.1016/j.scitotenv.2023.165317. |
| [25] | RASTOGI A, TIWARI M K, GHANGREKAR M M. A review on environmental occurrence, toxicity and microbial degradation of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)[J]. Journal of Environmental Management, 2021, 300: 113694. DOI:10.1016/j.jenvman.2021.113694. |
| [26] | 李富娟, 高礼, 李凌云, 等. 宁夏第三排水沟中药物和个人护理品(PPCPs)的污染特征与生态风险评估[J]. 环境科学, 2022, 43(8): 4087-4096. DOI:10.13227/j.hjkx.202112080. |
| [27] | 陈贤, 张彩杰, 杨桂朋, 等. 典型药物及个人护理品在黄东海海域水体中的检测、分布规律及其风险评估[J]. 环境科学, 2020, 41(1): 194-204. DOI:10.13227/j.hjkx.201907028. |
| [28] | 闵熙泽, 张子峰, 滕雨芊, 等. 北极地区水环境中PPCPs的污染现状研究进展[J]. 哈尔滨工业大学学报, 2023, 55(6): 19-32. DOI:10.11918/202209076. |
| [29] | SUN M X, FENG J J, FENG Y, et al. Preparation of ionic covalent organic frameworks and their applications in solid-phase extraction[J]. TrAC Trends in Analytical Chemistry, 2022, 157: 116829. DOI:10.1016/j.trac.2022.116829. |
| [30] |
CHEN F F, GONG Z Y, KELLY B C. Rapid analysis of pharmaceuticals and personal care products in fish plasma micro-aliquots using liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography A, 2015, 1383: 104-111. DOI:10.1016/j.chroma.2015.01.033.
pmid: 25640994 |
| [31] | TU X J, DU C P, HE Y C, et al. Determination of bisphenols in beeswax based on sugaring out-assisted liquid-liquid extraction: Method development and application in survey,recycling and degradation studies[J]. Chemosphere, 2024, 351: 141274. DOI:10.1016/j.chemosphere.2024.141274. |
| [32] | CEPEDA D S I, CASTAÑEDA H M P, MAYOR A V R, et al. Synthetic peptide purification via solid-phase extraction with gradient elution: A simple, economical, fast, and efficient methodology[J]. Molecules, 2019, 24(7): 1215. DOI:10.3390/molecules24071215. |
| [33] | PŁOTKA-WASYLKA J, SZCZEPAŃSKA N, DE LA GUARDIA M, et al. Miniaturized solid-phase extraction techniques[J]. TrAC Trends in Analytical Chemistry, 2015, 73: 19-38. DOI:10.1016/j.trac.2015.04.026. |
| [34] | MA J Y, JIANG H L, KANG F S, et al. High-Performance enrichment and sensitive analysis of bisphenol and its analogues in water and milk using a novel Ni-Based cationic Metal-Organic framework[J]. Food Chemistry, 2024, 441: 138267. DOI:10.1016/j.foodchem.2023.138267. |
| [35] |
JIAN N G, QIAN L L, WANG C M, et al. Novel nanofibers mat as an efficient, fast and reusable adsorbent for solid phase extraction of non-steroidal anti-inflammatory drugs in environmental water[J]. Journal of Hazardous Materials, 2019, 363: 81-89. DOI:10.1016/j.jhazmat.2018.09.052.
pmid: 30308368 |
| [36] | LIANG M, HOU X C, XIAN Y P, et al. Banana-peel-derived magnetic porous carbon as effective adsorbent for the enrichment of six bisphenols from beverage and water samples[J]. Food Chemistry, 2022, 376: 131948. DOI:10.1016/j.foodchem.2021.131948. |
| [37] | QIN H L, LIU H, LIU Y K, et al. Recent advances in sample preparation and chromatographic analysis of pharmaceuticals and personal care products in environment[J]. TrAC Trends in Analytical Chemistry, 2023, 164: 117112. DOI:10.1016/j.trac.2023.117112. |
| [38] | LIU J, LIU Q, WEI L L, et al. A novel polyhedral oligomeric silsesquioxane-based hybrid monolith as a sorbent for on-line in-tube solid phase microextraction of bisphenols in milk prior to high performance liquid chromatography-ultraviolet detection analysis[J]. Food Chemistry, 2022, 374: 131775. DOI:10.1016/j.foodchem.2021.131775. |
| [39] | BAGHERI N, AL LAWATI H A J, AL SHARJI N A, et al. Magnetic zinc based 2D-metal organic framework as an efficient adsorbent for simultaneous determination of fluoroquinolones using 3D printed microchip and liquid chromatography tandem mass spectrometry[J]. Talanta, 2021, 224: 121796. DOI:10.1016/j.talanta.2020.121796. |
| [40] | HUANG Y F, LI Y Y, WU Y F, et al. Computer-aided design-based green fabrication of magnetic molecularly imprinted nanoparticles for specific extraction of non-steroidal anti-inflammatory drugs[J]. Chemical Engineering Journal, 2023, 452: 139440. DOI:10.1016/j.cej.2022.139440. |
| [41] | LI S H, FENG S W, VAN SCHEPDAEL A, et al. Hollow fiber membrane-protected amino/hydroxyl bifunctional microporous organic network fiber for solid-phase microextraction of bisphenols A, F, S, and triclosan in breast milk and infant formula[J]. Food Chemistry, 2022, 390: 133217. DOI:10.1016/j.foodchem.2022.133217. |
| [42] | IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56-58. DOI:10.1038/354056a0. |
| [43] |
VALCÁRCEL M, SIMONET B M, CÁRDENAS S, et al. Present and future applications of carbon nanotubes to analytical science[J]. Analytical and Bioanalytical Chemistry, 2005, 382(8): 1783-1790. DOI:10.1007/s00216-005-3373-3.
pmid: 16007437 |
| [44] | NI R, WANG Y Z, WEI X X, et al. Magnetic carbon nanotube modified with polymeric deep eutectic solvent for the solid phase extraction of bovine serum albumin[J]. Talanta, 2020, 206: 120215. DOI:10.1016/j.talanta.2019.120215. |
| [45] | SOBHI H R, MOHAMMADZADEH F, BEHBAHANI M, et al. Application of a modified MWCNT-based d-μSPE procedure for determination of bisphenols in soft drinks[J]. Food Chemistry, 2022, 385: 132644. DOI:10.1016/j.foodchem.2022.132644. |
| [46] | XUE S, MA X F, WANG Y F, et al. Advanced development of three-dimensional covalent organic frameworks: Valency design, functionalization, and applications[J]. Coordination Chemistry Reviews, 2024, 504: 215659. DOI:10.1016/j.ccr.2024.215659. |
| [47] |
CÔTÉ A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. DOI:10.1126/science.1120411.
pmid: 16293756 |
| [48] | WANG R, CHEN Z L. A covalent organic framework-based magnetic sorbent for solid phase extraction of polycyclic aromatic hydrocarbons,andits hyphenation to HPLC for quantitation[J]. Microchimica Acta, 2017, 184(10): 3867-3874. DOI:10.1007/s00604-017-2408-8. |
| [49] | CHEN L X, WU Q, GAO J, et al. Applications of covalent organic frameworks in analytical chemistry[J]. TrAC Trends in Analytical Chemistry, 2019, 113: 182-193. DOI:10.1016/j.trac.2019.01.016. |
| [50] |
LIN Z L, JIN Y H, CHEN Y X, et al. Leaf-like ionic covalent organic framework for the highly efficient and selective removal of non-steroidal anti-inflammatory drugs: Adsorption performance and mechanism insights[J]. Journal of Colloid and Interface Science, 2023, 645: 943-955. DOI:10.1016/j.jcis.2023.05.026.
pmid: 37182326 |
| [51] | LEE J M, COOPER A I. Advances in conjugated microporous polymers[J]. Chemical Reviews, 2020, 120(4): 2171-2214.DOI:10.1021/acs.chemrev.9b00399. |
| [52] | MA J Q, LIU L, WANG X, et al. Development of dispersive solid-phase extraction with polyphenylene conjugated microporous polymers for sensitive determination of phenoxycarboxylic acids in environmental water samples[J]. Journal of Hazardous Materials, 2019, 371: 433-439. DOI:10.1016/j.jhazmat.2019.03.033. |
| [53] | WAN N N, CHANG Q Y, HOU F Y, et al. Nanoarchitectured conjugated microporous polymers: State of the art synthetic strategies and opportunities for adsorption science[J]. Chemistry of Materials, 2022, 34(17): 7598-7619. DOI:10.1021/acs.chemmater.2c00999. |
| [54] | SUN M, FENG J Q, FENG Y, et al. Core-shellsilica@pyridyl conjugated microporous polymer as a stationary phase for high performance liquid chromatography[J]. Analytica Chimica Acta, 2024, 1292: 342258. DOI:10.1016/j.aca.2024.342258. |
| [55] | WU Y Z, XIONG J H, WEI S J, et al. Molecularly imprinted polymers by reflux precipitation polymerization for selective solid-phase extraction of quinolone antibiotics from urine[J]. Journal of Chromatography A, 2024, 1714: 464550. DOI:10.1016/j.chroma.2023.464550. |
| [56] | GODAYOL A, BESALÚ E, ANTICÓ E, et al. Monitoring of sixteen fragrance allergens and two polycyclicmusks in wastewater treatment plants by solid phase microextraction coupled to gas chromatography[J]. Chemosphere, 2015, 119: 363-370. DOI:10.1016/j.chemosphere.2014.06.072. |
| [57] |
WEI F, ZHANG F F, LIAO H, et al. Preparation of novel polydimethylsiloxane solid-phase microextraction film and its application in liquid sample pretreatment[J]. Journal of Separation Science, 2011, 34(3): 331-339. DOI:10.1002/jssc.201000603.
pmid: 21268257 |
| [58] | LI J H, DONG R C, WANG X Y, et al. One-pot synthesis of magnetic molecularly imprinted microspheres by RAFT precipitation polymerization for the fast and selective removal of 17β-estradiol[J]. RSC Advances, 2015, 5(14): 10611-10618. DOI:10.1039/C4RA11177J. |
| [1] | XU Jianping, ZHANG Shilei, CHEN Chen, ZHU Jianjun, GUO Yupu. Carbon sequestration effect of aggregate spray-seeding technology in ecological restoration of damaged slopes [J]. Shandong Science, 2025, 38(5): 115-122. |
| [2] | WANG Yongfeng, YU Jingyuan, ZHANG Hao. Review of the sources, distribution, and health risks of bisphenol compounds in environmental media in China [J]. Shandong Science, 2025, 38(2): 13-27. |
|
||
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits third parties to freely share (i.e., copy and redistribute the material in any medium or format) and adapt (i.e., remix, transform, or build upon the material) the articles published in this journal, provided that appropriate credit is given, a link to the license is provided, and any changes made are indicated. The material may not be used for commercial purposes. For details of the CC BY-NC 4.0 license, please visit: https://creativecommons.org/licenses/by-nc/4.0