Shandong Science ›› 2024, Vol. 37 ›› Issue (2): 117-126.doi: 10.3976/j.issn.1002-4026.20240004
• Environment and Ecology • Previous Articles Next Articles
XU Dongning1(), WU Xiaoqing2, ZHOU Fangyuan2, FAN Susu2, ZHANG Xinjian2,*(
), XIAO Guiqing1,*(
), WANG Jianing2
Received:
2024-01-08
Online:
2024-04-20
Published:
2024-04-09
CLC Number:
XU Dongning, WU Xiaoqing, ZHOU Fangyuan, FAN Susu, ZHANG Xinjian, XIAO Guiqing, WANG Jianing. Research progress on microbial regulation technologies to reduce nitrogen loss in agricultural soils[J].Shandong Science, 2024, 37(2): 117-126.
[1] |
KLIMASMITH I M, KENT A D. Micromanaging the nitrogen cycle in agroecosystems[J]. Trends in Microbiology, 2022, 30(11): 1045-1055. DOI: 10.1016/j.tim.2022.04.006.
pmid: 35618540 |
[2] |
WANG S S, NAN J L, SHI C Z, et al. Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China[J]. Scientific Reports, 2015, 5: 15842. DOI: 10.1038/srep15842.
pmid: 26514559 |
[3] |
KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5): 263-276. DOI: 10.1038/nrmicro.2018.9.
pmid: 29398704 |
[4] | 林伟, 李玉中, 李昱佳, 等. 氮循环过程的微生物驱动机制研究进展[J]. 植物营养与肥料学报, 2020, 26(6): 1146-1155. DOI: 10.11674/zwyf.20143. |
[5] | 陈文新. 中国豆科植物根瘤菌资源多样性与系统发育[J]. 中国农业大学学报, 2004, (2): 6-7. DOI: 10.3321/j.issn:1007-4333.2004.02.002. |
[6] | STEIN L Y, KLOTZ M G. The nitrogen cycle[J]. Current Biology, 2016, 26(3): R94-R98. DOI: 10.1016/j.cub.2015.12.021. |
[7] | BALASUBRAMANIAN R, SMITH S M, RAWAT S, et al. Oxidation of methane by a biological dicopper centre[J]. Nature, 2010, 465(7294): 115-119. DOI: 10.1038/nature08992. |
[8] |
BEECKMAN F, MOTTE H, BEECKMAN T. Nitrification in agricultural soils: impact, actors and mitigation[J]. Current Opinion in Biotechnology, 2018, 50: 166-173. DOI: 10.1016/j.copbio.2018.01.014.
pmid: 29414056 |
[9] |
DAIMS H, LÜCKER S, WAGNER M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria[J]. Trends in Microbiology, 2016, 24(9): 699-712. DOI: 10.1016/j.tim.2016.05.004.
pmid: 27283264 |
[10] | SHI M Z, ZHAO Y, ZHU L J, et al. Denitrification during composting: biochemistry, implication and perspective[J]. International Biodeterioration & Biodegradation, 2020, 153: 105043. DOI: 10.1016/j.ibiod.2020.105043. |
[11] | SHARMA S, ANEJA M K, MAYER J, et al. Diversity of transcripts of nitrite reductase genes (nirK and nirS) in rhizospheres of grain legumes[J]. Applied and Environmental Microbiology, 2005, 71(4): 2001-2007. DOI: 10.1128/AEM.71.4.2001-2007.2005. |
[12] | SAKURAI N, SAKURAI T. Isolation and characterization of nitric oxide reductase from Paracoccus halodenitrificans[J]. Biochemistry, 1997, 36(45): 13809-13815. DOI: 10.1021/bi971070u. |
[13] | PAULETA S R, DELL’ACQUA S, MOURA I. Nitrous oxide reductase[J]. Coordination Chemistry Reviews, 2013, 257(2): 332-349. DOI: 10.1016/j.ccr.2012.05.026. |
[14] | 曾凯, 刘琳, 蔡义民, 等. 地下生态系统中氮素的循环及影响因素[J]. 草业科学, 2017, 34(3): 502-514. DOI: 10.11829/j.issn.1001-0629.2016-0342. |
[15] | 李凤霞, 王长军. 土壤氮素转化及相关微生物过程研究[J]. 宁夏农林科技, 2018, 59(4): 37-40. DOI: 10.3969/j.issn.1002-204X.2018.04.014. |
[16] | 王侧容, 郑春霞, 张漫漫, 等. 微生物异化硝酸盐和亚硝酸盐产铵研究进展[J]. 微生物学报, 2023, 63(4): 1340-1355. DOI: 10.13343/j.cnki.wsxb.20220665. |
[17] | 铁文周, 黄雪娇, 黄金兰, 等. 亚热带地区土壤硝酸盐异化还原成铵速率的空间差异和驱动因素[J]. 土壤, 2023, 55(5): 974-982. DOI: 10.13758/j.cnki.tr.2023.05.006. |
[18] | HERRIDGE D F, PEOPLES M B, BODDEY R M. Global inputs of biological nitrogen fixation in agricultural systems[J]. Plant and Soil, 2008, 311(1): 1-18. DOI: 10.1007/s11104-008-9668-3. |
[19] | FOWLER D, COYLE M, SKIBA U, et al. The global nitrogen cycle in the twenty-first century[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2013, 368(1621): 20130164. DOI: 10.1098/rstb.2013.0164. |
[20] | NAROŻNA D, PUDEŁKO K, KRÓLICZAK J, et al. Survival and competitiveness of Bradyrhizobium japonicum strains 20 years after introduction into field locations in Poland[J]. Applied and Environmental Microbiology, 2015, 81(16): 5552-5559. DOI: 10.1128/AEM.01399-15. |
[21] | 燕永亮, 田长富, 杨建国, 等. 人工高效生物固氮体系创建及其农业应用[J]. 生命科学, 2021, 33(12): 1532-1543. DOI: 10.13376/j.cbls/2021172. |
[22] | NIMNOI P, PONGSILP N, LUMYONG S. Co-inoculation of soybean (Glycine max) with actinomycetes and Bradyrhizobium japonicum enhances plant growth, nitrogenase activity and plant nutrition[J]. Journal of Plant Nutrition, 2014, 37(3): 432-446. DOI: 10.1080/01904167.2013.864308. |
[23] | BAI Y, ZHOU X, SMITH D L. Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum[J]. Crop Science, 2003, 43(5): 1774-1781. DOI: 10.2135/cropsci2003.1774. |
[24] | HUNGRIA M, NOGUEIRA M A, ARAUJO R S. Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability[J]. Biology and Fertility of Soils, 2013, 49(7): 791-801. DOI: 10.1007/s00374-012-0771-5. |
[25] | KE X B, FENG S, WANG J, et al. Effect of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphere[J]. Systematic and Applied Microbiology, 2019, 42(2): 248-260. DOI: 10.1016/j.syapm.2018.10.010. |
[26] | GÓMEZ-GODíNEZ L J, FERNANDEZ-VALVERDE S L, MARTINEZ ROMERO J C, et al. Metatranscriptomics and nitrogen fixation from the rhizoplane of maize plantlets inoculated with a group of PGPRs[J]. Systematic and Applied Microbiology, 2019, 42(4): 517-525. DOI: 10.1016/j.syapm.2019.05.003. |
[27] | 宗和. Azotic固氮技术进入美国市场可减少氮肥用量达50%[J]. 中国农资, 2019(2): 8. |
[28] | 杨军, 刘承武, 李霞, 等. 豆科植物-微生物共生固氮研究进展[J]. 植物生理学报, 2023, 59(08): 1407-1435. DOI: 10.13592/j.cnki.ppj.600005. |
[29] | de NOVAIS C B, SBRANA C, da CONCEIÇÃO JESUS E, et al. Mycorrhizal networks facilitate the colonization of legume roots by a symbiotic nitrogen-fixing bacterium[J]. Mycorrhiza, 2020, 30(2): 389-396. DOI: 10.1007/s00572-020-00948-w. |
[30] | TORRES M J, SIMON J, ROWLEY G, et al. Nitrous oxide metabolism in nitrate-reducing bacteria: physiology and regulatory mechanisms[J]. Advances Microbial Physiology, 2016, 68: 353-432. DOI: 10.1016/bs.ampbs.2016.02.007. |
[31] | 申卫收, 熊若男, 张欢欢, 等. 微生物介导的农业土壤氧化亚氮减排研究进展[J]. 土壤学报, 2023, 60(2): 332-344. DOI: 10.11766/trxb202106170315. |
[32] | HINK L, LYCUS P, GUBRY-RANGIN C, et al. Kinetics of NH3-oxidation, NO-turnover, N2O-production and electron flow during oxygen depletion in model bacterial and archaeal ammonia oxidisers[J]. Environmental Microbiology, 2017, 19(12): 4882-4896. DOI: 10.1111/1462-2920.13914 |
[33] | HINK L, GUBRY-RANGIN C, NICOL G W, et al. The consequences of niche and physiological differentiation of archaeal and bacterial ammonia oxidisers for nitrous oxide emissions[J]. The ISME Journal, 2018, 12(4): 1084-1093. DOI: 10.1038/s41396-017-0025-5. |
[34] | BAKKEN L R, FROSTEGÅRD Å. Emerging options for mitigating N2O emissions from food production by manipulating the soil microbiota[J]. Current Opinion in Environmental Sustainability, 2020, 47: 89-94. DOI: 10.1016/j.cosust.2020.08.010. |
[35] | WU S H, ZHUANG G Q, BAI Z, et al. Mitigation of nitrous oxide emissions from acidic soils by Bacillus amyloliquefaciens, a plant growth-promoting bacterium[J]. Global Change Biology, 2018, 24(6): 2352-2365. DOI: 10.1111/gcb.14025. |
[36] | GAO Y, MANIA D, MOUSAVI S A, et al. Competition for electrons favours N2O reduction in denitrifying Bradyrhizobium isolates[J]. Environmental Microbiology, 2021, 23(4): 2244-2259. DOI: 10.1111/1462-2920.15404. |
[37] | AKIYAMA H, HOSHINO Y T, ITAKURA M, et al. Mitigation of soil N2O emission by inoculation with a mixed culture of indigenous Bradyrhizobium diazoefficiens[J]. Scientific Reports, 2016, 6: 32869. DOI: 10.1038/srep32869. |
[38] | XU S J, FENG S G, SUN H S, et al. Linking N2O emissions from biofertilizer-amended soil of tea plantations to the abundance and structure of N2O -reducing microbial communities[J]. Environmental Science & Technology, 2018, 52(19): 11338-11345. DOI: 10.1021/acs.est.8b04935. |
[39] | GAO N, SHEN W S, CAMARGO E, et al. Nitrous oxide (N2O)-reducing denitrifier-inoculated organic fertilizer mitigates N2O emissions from agricultural soils[J]. Biology and Fertility of Soils, 2017, 53(8): 885-898. DOI: 10.1007/s00374-017-1231-z. |
[40] |
QIAO C L, LIU L L, HU S J, et al. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input[J]. Global Change Biology, 2015, 21(3): 1249-57. DOI: 10.1111/gcb.12802.
pmid: 25380547 |
[41] | 宋涛, 尹俊慧, 胡兆平, 等. 脲酶/硝化抑制剂减少农田土壤氮素损失的作用特征[J]. 农业资源与环境学报, 2021, 38(4): 585-597. DOI: 10.13254/j.jare.2020.0344. |
[42] | CUI M, SUN X, HU C, et al. Effective mitigation of nitrate leaching and nitrous oxide emissions in intensive vegetable production systems using a nitrification inhibitor, dicyandiamide[J]. Journal of Soils and Sediments, 2011, 11(5): 722-730. DOI: 10.1007/s11368-011-0357-0. |
[43] | KANCHAN A, SIMRANJIT K, RANJAN K, et al. Microbial biofilm inoculants benefit growth and yield of chrysanthemum varieties under protected cultivation through enhanced nutrient availability[J]. Plant Biosystems, 2019, 153(2): 306-316. DOI: 10.1080/11263504.2018.1478904. |
[44] | MORRISON E, LAGOS L, AL-AGELY A, et al. Mycorrhizal inoculation increases genes associated with nitrification and improved nutrient retention in soil[J]. Biology and Fertility of Soils, 2017, 53(3): 275-279. DOI: 10.1007/s00374-017-1176-2. |
[45] | SUN B, BAI Z H, BAO L J, et al. Bacillus subtilis biofertilizer mitigating agricultural ammonia emission and shifting soil nitrogen cycling microbiomes[J]. Environment International, 2020, 144: 105989. DOI: 10.1016/j.envint.2020.105989. |
[46] | PAN H W, QIN Y, WANG Y T, et al. Dissimilatory nitrate/nitrite reduction to ammonium (DNRA) pathway dominates nitrate reduction processes in rhizosphere and non-rhizosphere of four fertilized farmland soil[J]. Environmental Research, 2020, 186: 109612. DOI: 10.1016/j.envres.2020.109612. |
[47] |
SAGHAÏ A, POLD G, JONES C M, et al. Phyloecology of nitrate ammonifiers and their importance relative to denitrifiers in global terrestrial biomes[J]. Nature Communications, 2023, 14(1): 8249. DOI: 10.1038/s41467-023-44022-3.
pmid: 38086813 |
[48] | 邹娟, 胡学玉, 张阳阳, 等. 不同地表条件下生物炭对土壤氨挥发的影响[J]. 环境科学, 2018, 39(1): 348-354. DOI: 10.13227/1.hk-201706171. |
[49] | 朱影, 庄国强, 吴尚华, 等. 农田土壤氨挥发的过程和控制技术研究[J]. 环境保护科学, 2020, 46(6): 88-96. DOI: 10.16803/j.cnki.issn.1004-6216.2020.06.015. |
[50] | SILVA A G B, SEQUEIRA C H, SERMARINI R A, et al. Urease inhibitor NBPT on ammonia volatilization and crop productivity: a meta-analysis[J]. Agronomy Journal, 2017, 109(1): 1-13. DOI: 10.2134/agronj2016.04.0200. |
[51] | 徐丽萍, 王旭, 侯晓娜, 等. 脲酶抑制剂NBPT对三种类型土壤中UAN氮溶液氮素转化和氨挥发的影响[J]. 中国土壤与肥料, 2022(3): 126-136. DOI: 10.11838/sfsc.1673-6257.20718. |
[52] | 汪霞. 微生物菌剂对碱性土壤氨挥发的控制及其机理研究[D]. 合肥: 中国科学技术大学, 2017. |
[53] | 杨梦远, 滕钊军, 孙丽英. 生物菌剂对蔬菜产量及菜地活性气态氮排放的影响[J]. 南京信息工程大学学报(自然科学版), 2022, 14(4): 456-462. DOI: 10.13878/j-cnkijnuist.2022.04.009. |
[1] | SUN Lijiao, SUN Di, CHENG Xianhao, SHI Xiaowei, ZHAO Zhilong. Effects of different liquid culture media on growth and metabolism of Phylloporia ribis [J]. Shandong Science, 2023, 36(5): 27-32. |
[2] | LIU Minmin, WU Yuanzheng, HU Jindong, LI Jishun, WANG Yan, YANG Hetong. Burkholderia vietnamiensis B418 labeled with red fluorescent protein and its functional stability [J]. Shandong Science, 2023, 36(1): 51-57. |
[3] | HU Guang-yan, ZHAO Zhong-juan, YANG He-tong. Optimization of growth and spore-producing conditions of salt-tolerant Trichoderma atroviride TW320 and Trichoderma koningiopsis TW1876 [J]. Shandong Science, 2022, 35(6): 65-73. |
[4] | LI Ling, LIU Bao-jun, YANG Kai, CHEN Kai, WANG Yi-lian, LI Ji-shun. Effect of Trichoderma harzianum LTR-2 on winter wheat grain quality [J]. Shandong Science, 2021, 34(6): 62-67. |
[5] | WANG Yi-lian, ZHAO Zhong-juan, YANG Kai, LU Chang-hou, YU Yi, XU Wei-sheng, LI Ji-shun. Effects of Trichoderma harzianum T11-W and apple branch sawdust on cucumber seedling growth [J]. Shandong Science, 2021, 34(3): 36-41. |
[6] | ZHAO Pei-pei, LIU Hai-rong, YANG Meng, WANG Hong, QI Jun, LIU Chang-heng, XIA Xue-kui. Histone deacetylase gene knockout in Penicillium and changes in secondary metabolite production [J]. Shandong Science, 2021, 34(1): 21-27. |
[7] | WU Yuan-zheng, LI Jin-ping, LI Dan-dan, LIU Bao-jun, HU Jin-dong, LI Ji-shun, YANG He-tong. Research progress on endohyphal bacteria and their symbiosis with host fungi [J]. Shandong Science, 2020, 33(4): 34-45. |
[8] | HU Jin-dong, WU Yuan-zheng, WEI Yan-li, LI Hong-mei, XIN Xiang-qi, YANG Kai, LI Ji-shun. Effects of Trichoderma seed dressing agent on the diversity of fungal community in wheat rhizosphere soil [J]. Shandong Science, 2019, 32(1): 46-51. |
[9] | ZHAO Kai, GE Jing-hua, WANG Hai. Effects of different specific growth rates on phytase production by Pichia pastoris fermentation [J]. SHANDONG SCIENCE, 2018, 31(5): 43-47. |
[10] | YANG Jun-hui, GONG Wei-li, YANG Yan, MENG Qing-jun, SHI Jian-guo. A study of optimal fermentation conditions for phytase production by engineered strain [J]. SHANDONG SCIENCE, 2018, 31(4): 79-84. |
[11] | ZHAO Kai, GE Jing-hua, WANG Hai. Influence of the wet cell weight before induction on secretive expression of phytase in Pichia pastoris [J]. SHANDONG SCIENCE, 2018, 31(4): 85-88. |
[12] | LIU Da-le, WEI Xin-li, LI Cui-xin. Hypogymnia incurvoides, a new record of lichen species in China [J]. SHANDONG SCIENCE, 2018, 31(3): 110-112. |
[13] | WANG Yi-lian,XIE Xue-ying,HU Jin-dong,CHEN Kai,YANG He-Tong,LI Ji-shun. Optimization of fermentative medium for highly effective biocontrol strain Bacillus cereus BCJB01 against downy mildew [J]. SHANDONG SCIENCE, 2016, 29(4): 30-34. |
[14] | MU Hui, LI Yan, HUA Dong-liang, ZHANG Xiao-dong, XU Hai-peng, JIN Fu-qiang. Optimizing the biogas production from single-phase anaerobic fermentationof tomato stems and leaves using sludge [J]. SHANDONG SCIENCE, 2016, 29(3): 48-54. |
[15] | CHEN Kai, LI Jishun, ZHANG Guangzhi, WANG Yilian, ZHAO Xiaoyan,WU Xiaoqing,HU Jindong, YANG Hetong. Chinese new record Trichoderma capillare and its functional assessment [J]. SHANDONG SCIENCE, 2016, 29(1): 93-97. |
|