Shandong Science ›› 2023, Vol. 36 ›› Issue (3): 1-9.doi: 10.3976/j.issn.1002-4026.2023.03.001
• Pharmacology and Toxicology • Next Articles
SUN Tiefeng1(), DONG Limin2, JIAO Ziqi1, WANG Ping1,3,*(
)
Received:
2022-08-15
Online:
2023-06-20
Published:
2023-06-07
CLC Number:
SUN Tiefeng, DONG Limin, JIAO Ziqi, WANG Ping. Exploration of the dosing pattern and anti-respiratory syncytial virus mechanism of traditional Chinese medicine based on data mining and network pharmacology[J].Shandong Science, 2023, 36(3): 1-9.
Table 2
Information table of main anti-RSV active ingredients of Ephedrae Herba, Scutellariae Radix, licorice, and Amygdalus Communis Vas"
编号 | 化学成分 | 中文名称 | OB/% | DL | 度值 | 来源 |
---|---|---|---|---|---|---|
MOL000098 | quercetin | 槲皮素 | 46.43 | 0.28 | 106 | 麻黄 |
MOL000422 | kaempferol | 山柰酚 | 41.88 | 0.24 | 68 | 麻黄 |
MOL000358 | beta-sitosterol | β-谷甾醇 | 36.91 | 0.75 | 58 | 黄芩 |
MOL000173 | wogonin | 汉黄芩素 | 30.68 | 0.23 | 33 | 黄芩 |
MOL000228 | (2R)-7-hydroxy-5-methoxy-2-phenylchroman-4-one | 山姜素 | 55.23 | 0.20 | 29 | 黄芩 |
MOL000552 | 5,2'-Dihydroxy-6,7,8-trimethoxyflavone | 韧黄芩素I | 31.71 | 0.35 | 24 | 黄芩 |
MOL004328 | naringenin | 柚皮素 | 59.29 | 0.21 | 15 | 甘草 |
MOL002823 | herbacetin | 草质素苷 | 36.07 | 0.27 | 14 | 麻黄 |
Table 3
Core target information of Ephedrae Herba, Scutellariae Radix, licorice, and Amygdalus Communis Vas against RSV"
靶点 | 英文名 | 中文名 | 度值 |
---|---|---|---|
GSR | glutathione reductase | 谷胱甘肽还原酶 | 62 |
TP53 | cellular tumor antigen p53 | 肿瘤蛋白P53 | 60 |
SOD1 | gene expression of catalase | 过氧化氢酶 | 57 |
EGFR | epidermal growth factor receptor | 表皮生长因子受体 | 55 |
CYP3A4 | cytochrome P450 3A4 | 细胞色素P450 3A4 | 53 |
GSTP1 | glutathione S-transferase P1 | 谷胱甘肽S-转移酶P1 | 52 |
TNF | tumor necrosis factor | 肿瘤坏死因子 | 51 |
IL-1β | interleukin-1 beta | 白细胞介素-1β | 50 |
GSK3B | glycogen synthase kinase-3 beta | 糖原合酶激酶-3β | 50 |
PTGS2 | prostaglandin-endoperoxide synthase 2 | 前列腺素-内过氧化物合酶2 | 48 |
[1] |
LI Y, WANG X, BLAU D M, et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: A systematic analysis[J]. The Lancet, 2022, 399(10340): 2047-2064. DOI: 10.1016/S0140-6736(22)00478-0.
doi: 10.1016/S0140-6736(22)00478-0 |
[2] | 崔振泽, 黄燕, 刘明涛, 等. 定喘汤对呼吸道合胞病毒感染大鼠肺组织TSLP、GATA3表达的影响[J]. 中华中医药杂志, 2018, 33(12): 5581-5583. |
[3] |
谢志鸿, 秦铁林. 双黄连雾化吸入治疗呼吸道合胞病毒所致急性下呼吸道感染[J]. 内蒙古中医药, 2017, 36(1): 54. DOI: 10.16040/j.cnki.cn15-1101.2017.01.054.
doi: 10.16040/j.cnki.cn15-1101.2017.01.054 |
[4] |
邹亚, 郭盛, 景晓平, 等. 清肺口服液通过ERK1/2通路调控RSV所致呼吸道炎症损伤的机制[J]. 中国实验方剂学杂志, 2018, 24(2): 86-91. DOI: 10.13422/j.cnki.syfjx.2018020086.
doi: 10.13422/j.cnki.syfjx.2018020086 |
[5] | 国家药典委员会. 中华人民共和国药典2020年版一部[M]. 北京: 中国医药科技出版社, 2020. |
[6] |
RU J L, LI P, WANG J N, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines[J]. Journal of Cheminformatics, 2014, 6: 13. DOI: 10.1186/1758-2946-6-13.
doi: 10.1186/1758-2946-6-13 pmid: 24735618 |
[7] |
SHANG Z F, TAN S G, MA D L. Respiratory syncytial virus: From pathogenesis to potential therapeutic strategies[J]. International Journal of Biological Sciences, 2021, 17(14): 4073-4091. DOI: 10.7150/ijbs.64762.
doi: 10.7150/ijbs.64762 pmid: 34671221 |
[8] |
世界中医药学会联合会. 网络药理学评价方法指南[J]. 世界中医药, 2021, 16(4): 527-532. DOI: 10.3969/j.issn.1673-7202.2021.04.001.
doi: 10.3969/j.issn.1673-7202.2021.04.001 |
[9] |
田景振, 杨振宁. 中医药抗病毒研究思路、理论创新与基本路径[J]. 山东中医杂志, 2018, 37(6): 439-444. DOI: 10.16295/j.cnki.0257-358x.2018.06.001.
doi: 10.16295/j.cnki.0257-358x.2018.06.001 |
[10] |
TEIXEIRA T S P, CARUSO Í P, LOPES B R P, et al. Biophysical characterization of the interaction between M2-1 protein ofhRSV and quercetin[J]. International Journal of Biological Macromolecules, 2017, 95: 63-71. DOI: 10.1016/j.ijbiomac.2016.11.033.
doi: 10.1016/j.ijbiomac.2016.11.033 |
[11] |
YANG Z F, BAI L P, HUANG W B, et al. Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure-activity relationship analysis[J]. Fitoterapia, 2014, 93: 47-53. DOI: 10.1016/j.fitote.2013.12.011.
doi: 10.1016/j.fitote.2013.12.011 |
[12] |
MA S C, DU J, BUT P P H, et al. Antiviral Chinese medicinal herbs against respiratory syncytial virus[J]. Journal of Ethnopharmacology, 2002, 79(2): 205-211. DOI: 10.1016/S0378-8741(01)00389-0.
doi: 10.1016/S0378-8741(01)00389-0 |
[13] |
LIU X M, NGUYEN T H, SOKULSKY L, et al. IL-17A is a common and critical driver of impaired lung function and immunopathology induced by influenza virus, rhinovirus and respiratory syncytial virus[J]. Respirology (Carlton, Vic), 2021, 26(11): 1049-1059. DOI: 10.1111/resp.14141.
doi: 10.1111/resp.14141 |
[14] |
HABIBI M S, THWAITES R S, CHANG M P, et al. Neutrophilic inflammation in the respiratory mucosa predisposes to RSV infection[J]. Science, 2020, 370(6513): eaba9301. DOI: 10.1126/science.aba9301.
doi: 10.1126/science.aba9301 |
[15] |
RUSSELL M S, CRESKEY M, MURALIDHARAN A, et al. Unveiling integrated functional pathways leading to enhanced respiratory disease associated with inactivated respiratory syncytial viral vaccine[J]. Frontiers in Immunology, 2019, 10: 597. DOI: 10.3389/fimmu.2019.00597.
doi: 10.3389/fimmu.2019.00597 pmid: 30984178 |
[16] |
CHRISTIAANSEN A F, SYED M A, TEN EYCK P P, et al. Altered Treg and cytokine responses in RSV-infected infants[J]. Pediatric Research, 2016, 80(5): 702-709. DOI: 10.1038/pr.2016.130.
doi: 10.1038/pr.2016.130 pmid: 27486703 |
[17] |
STOPPELENBURG A J, DE ROOCK S, HENNUS M P, et al. Elevated Th17 response in infants undergoing respiratory viral infection[J]. The American Journal of Pathology, 2014, 184(5): 1274-1279. DOI: 10.1016/j.ajpath.2014.01.033.
doi: 10.1016/j.ajpath.2014.01.033 |
[18] |
OOKA T, RAITA Y, FUJIOGI M, et al. Proteomics endotyping of infants with severe bronchiolitis and risk of childhood asthma[J]. Allergy, 2022, 77(11): 3350-3361. DOI: 10.1111/all.15390.
doi: 10.1111/all.15390 pmid: 35620861 |
[19] |
SANTOS L D, ANTUNES K H, MURARO S P, et al. TNF-mediated alveolar macrophage necroptosis drives disease pathogenesis during respiratory syncytial virus infection[J]. The European Respiratory Journal, 2021, 57(6): 2003764. DOI: 10.1183/13993003.03764-2020.
doi: 10.1183/13993003.03764-2020 |
[20] |
REMMERIE B, Van DEN BOER M, Van LOOY T, et al. Integrating duodenal sampling in a human mass balance study to quantify the elimination pathways of JNJ-53718678, a respiratory syncytial virus fusion protein inhibitor[J]. Advances in Therapy, 2020, 37(1): 578-591. DOI: 10.1007/s12325-019-01162-7.
doi: 10.1007/s12325-019-01162-7 pmid: 31832988 |
[21] |
ANDERSSON C K, IWASAKI J, COOK J, et al. Impaired airway epithelial cell wound-healing capacity is associated with airwayremodelling following RSV infection in severe preschool wheeze[J]. Allergy, 2020, 75(12): 3195-3207. DOI: 10.1111/all.14466.
doi: 10.1111/all.14466 |
[22] |
DU X Z, YANG Y, YANG M, et al. ITGB4 deficiency induces mucus hypersecretion by upregulating MUC5AC in RSV-infected airway epithelial cells[J]. International Journal of Biological Sciences, 2022, 18(1): 349-359. DOI: 10.7150/ijbs.66215.
doi: 10.7150/ijbs.66215 pmid: 34975337 |
[23] |
ASENJO A, GONZÁLEZ-ARMAS J C, VILLANUEVA N. Phosphorylation of human respiratory syncytial virus P protein at serine 54 regulates viral uncoating[J]. Virology, 2008, 380(1): 26-33. DOI: 10.1016/j.virol.2008.06.045.
doi: 10.1016/j.virol.2008.06.045 pmid: 18706669 |
[24] |
DAS S, RAUNDHAL M, CHEN J, et al. Respiratory syncytial virus infection of newborn CX3CR1-deficient mice induces a pathogenic pulmonary innate immune response[J]. JCI Insight, 2017, 2(17): e94605. DOI: 10.1172/jci.insight.94605.
doi: 10.1172/jci.insight.94605 |
[25] |
ANTALIS E, SPATHIS A, KOTTARIDI C, et al. Th17 serum cytokines in relation to laboratory-confirmed respiratory viral infection: A pilot study[J]. Journal of Medical Virology, 2019, 91(6): 963-971. DOI: 10.1002/jmv.25406.
doi: 10.1002/jmv.25406 pmid: 30715745 |
[26] |
HOSAKOTE Y M, KOMARAVELLI N, MAUTEMPS N, et al. Antioxidant mimetics modulate oxidative stress and cellular signaling in airway epithelial cells infected with respiratory syncytial virus[J]. American Journal of Physiology Lung Cellular and Molecular Physiology, 2012, 303(11): L991-L1000. DOI: 10.1152/ajplung.00192.2012.
doi: 10.1152/ajplung.00192.2012 |
[27] |
WANG M M, LU M, ZHANG C L, et al. Oxidative stress modulates the expression of toll like receptor 3 during respiratory syncytial virus infection in human lung epithelial A549 cells[J]. Molecular Medicine Reports, 2018, 18(2): 1867-1877. DOI: 10.3892/mmr.2018.9089.
doi: 10.3892/mmr.2018.9089 |
[28] |
ALBARRACIN L, GARCIA-CASTILLO V, MASUMIZU Y, et al. Efficient selection of new immunobiotic strains with antiviral effects in local and distal mucosal sites by using Porcine intestinal epitheliocytes[J]. Frontiers in Immunology, 2020, 11: 543. DOI: 10.3389/fimmu.2020.00543.
doi: 10.3389/fimmu.2020.00543 pmid: 32322251 |
|