Shandong Science ›› 2022, Vol. 35 ›› Issue (4): 28-37.doi: 10.3976/j.issn.1002-4026.2022.04.005
• Pharmacology and Toxicology • Previous Articles Next Articles
DU Hai-tao1,2(), WANG Ping1,3,*(
), LI Na2, HAN Li1, DING Jie2, HU Ya-nan2
Received:
2021-07-21
Online:
2022-08-20
Published:
2022-07-25
Contact:
WANG Ping
E-mail:kkitdht@foxmail.com;wangpingjinan@163.com
CLC Number:
DU Hai-tao, WANG Ping, LI Na, HAN Li, DING Jie, HU Ya-nan. The mechanism underlying Fagopyri Dibotryis Rhizoma's action against respiratory syncytial virus using network pharmacology[J].Shandong Science, 2022, 35(4): 28-37.
Table 1
Potential active ingredients of Fagopyri Dibotryis Rhizoma"
NO | 英文名 | 中文名 | 归类 | Mol ID | 分子量 |
---|---|---|---|---|---|
01 | Quercetin | 槲皮素 | 黄酮 | MOL000098 | 302.25 |
02 | Eriodyctiol | 圣草酚 | 黄酮 | MOL002914 | 288.27 |
03 | Isorhamnetin | 异鼠李素 | 黄酮 | MOL000354 | 316.28 |
04 | Beta-sitosterol | β-谷甾醇 | 甾体 | MOL000358 | 414.79 |
05 | Sitosterol | 谷甾醇 | 甾体 | MOL000359 | 414.79 |
06 | Procyanidin B1 | 原花青素B1 | 黄酮 | MOL000004 | 578.56 |
07 | (+)-Catechin | (+)-儿茶素 | 黄酮 | MOL000492 | 290.29 |
08 | Digallate | 二没食子酸 | 鞣质 | MOL000569 | 322.24 |
09 | Luteolin | 木犀草素 | 黄酮 | MOL000006 | 286.25 |
10 | Coumaroyltyramine | 辣椒碱 | 酰胺 | MOL000631 | 283.35 |
11 | (-)-Catechin gallate | (-)-儿茶素没食子酸酯 | 黄酮 | MOL006504 | 442.40 |
12 | 3-Methylquercetin | 3-甲基槲皮素 | 黄酮 | MOL007280 | 316.28 |
13 | (-)-Epicatechin | (-)-表儿茶素 | 黄酮 | MOL000073 | 290.29 |
14 | 3,8-dihydroxy-10-methoxy-5-h-isochromeno [4,,3-b]chromen-7-one | 3,8-二羟基-10-甲氧基-5-h- 异色烯[4,3-b]色烯-7-酮 | 黄酮 | MOL007301 | 312.29 |
15 | (-)-catechin | (-)-儿茶素 | 黄酮 | MOL000096 | 290.29 |
[1] |
SHI T, MCALLISTER D A, O'BRIEN K L, et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015:A systematic review and modelling study[J]. The Lancet, 2017, 390(10098):946-958. DOI:10.1016/S0140-6736(17)30938-8.
doi: 10.1016/S0140-6736(17)30938-8 |
[2] | 杜海涛, 孙铁锋, 王平, 等. 清热药抗呼吸道合胞病毒的研究进展[J]. 中成药, 2019, 41(10):2435-2441. |
[3] |
WANG G Y, DEVAL J, HONG J, et al. Discovery of 4'-Chloromethyl-2'-deoxy-3', 5'-di-O-isobutyryl-2'-fluorocytidine (ALS-8176), A First-in-Class rsv polymerase inhibitor for treatment of human respiratory syncytial virus infection[J]. Journal of Medicinal Chemistry, 2015, 58(4):1862-1878. DOI: 10.1021/jm5017279.
doi: 10.1021/jm5017279 |
[4] |
FRIEDMAN N, ALTER H, HINDIYEH M, et al. Human Coronavirus Infections in Israel:Epidemiology, Clinical Symptoms and Summer Seasonality of HCoV-HKU1[J]. Viruses, 2018, 10(10) :515. DOI: 10.3390/v10100515.
doi: 10.3390/v10100515 |
[5] |
RUCKWARDT T J, MORABITO K M, GRAHAM B S. Immunological lessons from respiratory syncytial virus vaccine development[J]. Immunity, 2019, 51(3):429-442. DOI: 10.1016/j.immuni.2019.08.007.
doi: 10.1016/j.immuni.2019.08.007 |
[6] |
严晶, 袁嘉嘉, 刘丽娜, 等. 金荞麦药理作用及临床应用研究进展[J]. 山东中医杂志, 2017, 36(7):621-624. DOI: 10.16295/j.cnki.0257-358x.2017.07.026.
doi: 10.16295/j.cnki.0257-358x.2017.07.026 |
[7] |
赵炎军, 刘园, 谢升阳, 等. 金荞麦提取物体外抗流感病毒作用研究[J]. 中国现代应用药学, 2019, 36(21):2648-2651. DOI: 10.13748/j.cnki.issn1007-7693.2019.21.005.
doi: 10.13748/j.cnki.issn1007-7693.2019.21.005 |
[8] |
杨玺文, 张燕, 李隆云. 药用植物金荞麦研究进展[J]. 中国现代中药, 2019, 21(6):837-846. DOI: 10.13313/j.issn.1673-4890.20180709003.
doi: 10.13313/j.issn.1673-4890.20180709003 |
[9] |
PRADO-PRADO F J, URIARTE E, BORGES F, et al. Multi-target spectral moments for QSAR and Complex Networks study of antibacterial drugs[J]. European Journal of Medicinal Chemistry, 2009, 44(11):4516-4521. DOI: 10.1016/j.ejmech.2009.06.018.
doi: 10.1016/j.ejmech.2009.06.018 |
[10] |
CALZOLAI L, ANSORGE W, CALABRESE E, et al. Transcriptomics and proteomics. Applications to ecotoxicology[J]. Comparative Biochemistry and Physiology Part D:Genomics and Proteomics, 2007, 2(3):245-249. DOI: 10.1016/j.cbd.2007.04.007.
doi: 10.1016/j.cbd.2007.04.007 |
[11] |
姚文博, 李丰, 石彬彬, 等. 系统药理学Ⅲ:在诠释中医药整体作用机制中的应用进展[J]. 中国实验方剂学杂志, 2020, 26(13):219-227.DOI: 10.13422/j.cnki.syfjx.20200655.
doi: 10.13422/j.cnki.syfjx.20200655 |
[12] |
张彦琼, 李梢. 网络药理学与中医药现代研究的若干进展[J]. 中国药理学与毒理学杂志, 2015, 29(6):883-892. DOI: 10.3867/j.issn.1000-3002.2015.06.002.
doi: 10.3867/j.issn.1000-3002.2015.06.002 |
[13] |
RU J L, LI P, WANG J N, et al. TCMSP:a database of systems pharmacology for drug discovery from herbal medicines[J]. Journal of Cheminformatics, 2014, 6:13. DOI: 10.1186/1758-2946-6-13.
doi: 10.1186/1758-2946-6-13 |
[14] |
LI J S, ZHAO P, LI Y, et al. Systems pharmacology-based dissection of mechanisms of Chinese medicinal formula Bufei Yishen as an effective treatment for chronic obstructive pulmonary disease[J]. Scientific Reports, 2015, 5:15290. DOI: 10.1038/srep15290.
doi: 10.1038/srep15290 |
[15] |
GFELLER D, MICHIELIN O, ZOETE V. Shaping the interaction landscape of bioactive molecules[J]. Bioinformatics, 2013, 29(23):3073-3079. DOI: 10.1093/bioinformatics/btt540.
doi: 10.1093/bioinformatics/btt540 |
[16] |
VON MERING C, JENSEN L J, SNEL B, et al. STRING:known and predicted protein-protein associations, integrated and transferred across organisms[J]. Nucleic Acids Research, 2005, 33(Database issue):D433-D437. DOI: 10.1093/nar/gki005.
doi: 10.1093/nar/gki005 |
[17] |
LIU J L, LIU J J, SHEN F X, et al. Systems pharmacology analysis of synergy of TCM:An example using saffron formula[J]. Scientific Reports, 2018, 8(1):380. DOI: 10.1038/s41598-017-18764-2.
doi: 10.1038/s41598-017-18764-2 |
[18] |
MOMOTA R, OHTSUKA A. Network of anatomical texts (NAnaTex), an open-source project for visualizing the interaction between anatomical terms[J]. Anatomical Science International, 2018, 93(1):149-153. DOI: 10.1007/s12565-017-0410-1.
doi: 10.1007/s12565-017-0410-1 |
[19] |
LI S, ZHANG Z Q, WU L J, et al. Understanding ZHENG in traditional Chinese medicine in the context of neuro-endocrine-immune network[J]. IET Systems Biology, 2007, 1(1):51-60. DOI: 10.1049/iet-syb:20060032.
doi: 10.1049/iet-syb:20060032 |
[20] |
IOANNIDIS I, MCNALLY B, WILLETTE M, et al. Plasticity and virus specificity of the airway epithelial cell immune response during respiratory virus infection[J]. Journal of Virology, 2012, 86(10):5422-5436. DOI: 10.1128/JVI.06757-11.
doi: 10.1128/JVI.06757-11 |
[21] |
BENJAMINI Y, HOCHBERG Y. Controlling the false discovery rate:a practical and powerful approach to multiple testing[J]. Journal of the Royal Statistical Society:Series B (Methodological), 1995, 57(1):289-300. DOI: 10.1111/j.2517-6161.1995.tb02031.x.
doi: 10.1111/j.2517-6161.1995.tb02031.x. |
[22] |
JO S, KIM S, SHIN D H, et al. Inhibition of SARS-CoV 3CL protease by flavonoids[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35(1):145-151. DOI: 10.1080/14756366.2019.1690480.
doi: 10.1080/14756366.2019.1690480 |
[23] | 王登嵘, 刘显, 肖健. Src蛋白激酶在疾病中的功能及研究现状[J]. 医学与哲学(B), 2018, 39(1):58-60. |
[24] |
张佳鑫, 蒋一凡, 雷昕诺, 等. Src和Abl酪氨酸蛋白激酶家族参与病原微生物感染的研究进展[J]. 微生物学通报, 2019, 46(10):2781-2786. DOI: 10.13344/j.microbiol.china.180793.
doi: 10.13344/j.microbiol.china.180793 |
[25] | 郑刚. Src同源磷酸酪氨酸磷酸酶2促进α-干扰素诱导的jak/stat1信号通路从而抑制呼吸道合胞病毒复制[D]. 杭州: 浙江大学, 2015. |
[26] |
RATTANAMAHAPHOOM J, LEAUNGWUTIWONG P, LIMKITTIKUL K, et al. Activation of dengue virus-specific T cells modulates vascular endothelial growth factor receptor 2 expression[J]. Asian Pacific Journal of Allergy and Immunology, 2017, 35(3):171-178. DOI: 10.12932/ap0810.
doi: 10.12932/ap0810 |
[27] |
DARNELL J E, KERR I M, STARK G R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins[J]. Science, 1994, 264(5164):1415-1421. DOI: 10.1126/science.8197455.
doi: 10.1126/science.8197455 |
[28] |
汤波, 韦佳佳, 徐丙发, 等. STAT1修饰对干扰素抗乙肝病毒作用影响的研究进展[J]. 安徽医科大学学报, 2017, 52(4):615-618. DOI: 10.19405/j.cnki.issn1000-1492.2017.04.035.
doi: 10.19405/j.cnki.issn1000-1492.2017.04.035 |
[29] |
KVANSAKUL M, CARIA S, HINDS M. The bcl-2 family in host-virus interactions[J]. Viruses, 2017, 9(10):290. DOI: 10.3390/v9100290.
doi: 10.3390/v9100290 |
[30] |
THOMAS K W, MONICK M M, STABER J M, et al. Respiratory syncytial virus inhibits apoptosis and induces NF-κB activity through a phosphatidylinositol 3-kinase-dependent pathway[J]. Journal of Biological Chemistry, 2002, 277(1):492-501. DOI: 10.1074/jbc.M108107200.
doi: 10.1074/jbc.M108107200 |
[31] |
MONICK M M, CAMERON K, POWERS L S, et al. Sphingosine kinase mediates activation of extracellular signal-related kinase and Akt by respiratory syncytial virus[J]. American Journal of Respiratory Cell and Molecular Biology, 2004, 30(6):844-852. DOI: 10.1165/rcmb.2003-0424OC.
doi: 10.1165/rcmb.2003-0424OC |
[32] |
BONSER L R, ERLE D J. Airway Mucus and Asthma:the role of MUC5AC and MUC5B[J]. Journal Clinical Medicine, 2017, 6(12):112. DOI: 10.3390/jcm6120112.
doi: 10.3390/jcm6120112 |
[33] |
CURRIER M G, LEE S, STOBART C C, et al. EGFR interacts with the fusion protein of respiratory syncytial virus strain 2-20 and mediates infection and mucin expression[J]. PLoS Pathogens, 2016, 12(5):e1005622. DOI: 10.1371/journal.ppat.1005622.
doi: 10.1371/journal.ppat.1005622 |
[34] | 刘娟娟, 张婷, 米芋枚. 呼吸道合胞病毒感染对气道上皮细胞表皮生长因子受体、紧密连接相关蛋白及黏蛋白表达的影响[J]. 中国当代儿科杂志, 2019, 21(3):294-299. |
|