Shandong Science ›› 2022, Vol. 35 ›› Issue (4): 28-37.doi: 10.3976/j.issn.1002-4026.2022.04.005
• Pharmacology and Toxicology • Previous Articles Next Articles
DU Hai-tao1,2(
), WANG Ping1,3,*(
), LI Na2, HAN Li1, DING Jie2, HU Ya-nan2
Received:2021-07-21
Published:2022-08-20
Online:2022-07-25
Contact:
WANG Ping
E-mail:kkitdht@foxmail.com;wangpingjinan@163.com
CLC Number:
DU Hai-tao, WANG Ping, LI Na, HAN Li, DING Jie, HU Ya-nan. The mechanism underlying Fagopyri Dibotryis Rhizoma's action against respiratory syncytial virus using network pharmacology[J].Shandong Science, 2022, 35(4): 28-37.
Table 1
Potential active ingredients of Fagopyri Dibotryis Rhizoma"
| NO | 英文名 | 中文名 | 归类 | Mol ID | 分子量 |
|---|---|---|---|---|---|
| 01 | Quercetin | 槲皮素 | 黄酮 | MOL000098 | 302.25 |
| 02 | Eriodyctiol | 圣草酚 | 黄酮 | MOL002914 | 288.27 |
| 03 | Isorhamnetin | 异鼠李素 | 黄酮 | MOL000354 | 316.28 |
| 04 | Beta-sitosterol | β-谷甾醇 | 甾体 | MOL000358 | 414.79 |
| 05 | Sitosterol | 谷甾醇 | 甾体 | MOL000359 | 414.79 |
| 06 | Procyanidin B1 | 原花青素B1 | 黄酮 | MOL000004 | 578.56 |
| 07 | (+)-Catechin | (+)-儿茶素 | 黄酮 | MOL000492 | 290.29 |
| 08 | Digallate | 二没食子酸 | 鞣质 | MOL000569 | 322.24 |
| 09 | Luteolin | 木犀草素 | 黄酮 | MOL000006 | 286.25 |
| 10 | Coumaroyltyramine | 辣椒碱 | 酰胺 | MOL000631 | 283.35 |
| 11 | (-)-Catechin gallate | (-)-儿茶素没食子酸酯 | 黄酮 | MOL006504 | 442.40 |
| 12 | 3-Methylquercetin | 3-甲基槲皮素 | 黄酮 | MOL007280 | 316.28 |
| 13 | (-)-Epicatechin | (-)-表儿茶素 | 黄酮 | MOL000073 | 290.29 |
| 14 | 3,8-dihydroxy-10-methoxy-5-h-isochromeno [4,,3-b]chromen-7-one | 3,8-二羟基-10-甲氧基-5-h- 异色烯[4,3-b]色烯-7-酮 | 黄酮 | MOL007301 | 312.29 |
| 15 | (-)-catechin | (-)-儿茶素 | 黄酮 | MOL000096 | 290.29 |
| [1] |
SHI T, MCALLISTER D A, O'BRIEN K L, et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015:A systematic review and modelling study[J]. The Lancet, 2017, 390(10098):946-958. DOI:10.1016/S0140-6736(17)30938-8.
doi: 10.1016/S0140-6736(17)30938-8 |
| [2] | 杜海涛, 孙铁锋, 王平, 等. 清热药抗呼吸道合胞病毒的研究进展[J]. 中成药, 2019, 41(10):2435-2441. |
| [3] |
WANG G Y, DEVAL J, HONG J, et al. Discovery of 4'-Chloromethyl-2'-deoxy-3', 5'-di-O-isobutyryl-2'-fluorocytidine (ALS-8176), A First-in-Class rsv polymerase inhibitor for treatment of human respiratory syncytial virus infection[J]. Journal of Medicinal Chemistry, 2015, 58(4):1862-1878. DOI: 10.1021/jm5017279.
doi: 10.1021/jm5017279 |
| [4] |
FRIEDMAN N, ALTER H, HINDIYEH M, et al. Human Coronavirus Infections in Israel:Epidemiology, Clinical Symptoms and Summer Seasonality of HCoV-HKU1[J]. Viruses, 2018, 10(10) :515. DOI: 10.3390/v10100515.
doi: 10.3390/v10100515 |
| [5] |
RUCKWARDT T J, MORABITO K M, GRAHAM B S. Immunological lessons from respiratory syncytial virus vaccine development[J]. Immunity, 2019, 51(3):429-442. DOI: 10.1016/j.immuni.2019.08.007.
doi: 10.1016/j.immuni.2019.08.007 |
| [6] |
严晶, 袁嘉嘉, 刘丽娜, 等. 金荞麦药理作用及临床应用研究进展[J]. 山东中医杂志, 2017, 36(7):621-624. DOI: 10.16295/j.cnki.0257-358x.2017.07.026.
doi: 10.16295/j.cnki.0257-358x.2017.07.026 |
| [7] |
赵炎军, 刘园, 谢升阳, 等. 金荞麦提取物体外抗流感病毒作用研究[J]. 中国现代应用药学, 2019, 36(21):2648-2651. DOI: 10.13748/j.cnki.issn1007-7693.2019.21.005.
doi: 10.13748/j.cnki.issn1007-7693.2019.21.005 |
| [8] |
杨玺文, 张燕, 李隆云. 药用植物金荞麦研究进展[J]. 中国现代中药, 2019, 21(6):837-846. DOI: 10.13313/j.issn.1673-4890.20180709003.
doi: 10.13313/j.issn.1673-4890.20180709003 |
| [9] |
PRADO-PRADO F J, URIARTE E, BORGES F, et al. Multi-target spectral moments for QSAR and Complex Networks study of antibacterial drugs[J]. European Journal of Medicinal Chemistry, 2009, 44(11):4516-4521. DOI: 10.1016/j.ejmech.2009.06.018.
doi: 10.1016/j.ejmech.2009.06.018 |
| [10] |
CALZOLAI L, ANSORGE W, CALABRESE E, et al. Transcriptomics and proteomics. Applications to ecotoxicology[J]. Comparative Biochemistry and Physiology Part D:Genomics and Proteomics, 2007, 2(3):245-249. DOI: 10.1016/j.cbd.2007.04.007.
doi: 10.1016/j.cbd.2007.04.007 |
| [11] |
姚文博, 李丰, 石彬彬, 等. 系统药理学Ⅲ:在诠释中医药整体作用机制中的应用进展[J]. 中国实验方剂学杂志, 2020, 26(13):219-227.DOI: 10.13422/j.cnki.syfjx.20200655.
doi: 10.13422/j.cnki.syfjx.20200655 |
| [12] |
张彦琼, 李梢. 网络药理学与中医药现代研究的若干进展[J]. 中国药理学与毒理学杂志, 2015, 29(6):883-892. DOI: 10.3867/j.issn.1000-3002.2015.06.002.
doi: 10.3867/j.issn.1000-3002.2015.06.002 |
| [13] |
RU J L, LI P, WANG J N, et al. TCMSP:a database of systems pharmacology for drug discovery from herbal medicines[J]. Journal of Cheminformatics, 2014, 6:13. DOI: 10.1186/1758-2946-6-13.
doi: 10.1186/1758-2946-6-13 |
| [14] |
LI J S, ZHAO P, LI Y, et al. Systems pharmacology-based dissection of mechanisms of Chinese medicinal formula Bufei Yishen as an effective treatment for chronic obstructive pulmonary disease[J]. Scientific Reports, 2015, 5:15290. DOI: 10.1038/srep15290.
doi: 10.1038/srep15290 |
| [15] |
GFELLER D, MICHIELIN O, ZOETE V. Shaping the interaction landscape of bioactive molecules[J]. Bioinformatics, 2013, 29(23):3073-3079. DOI: 10.1093/bioinformatics/btt540.
doi: 10.1093/bioinformatics/btt540 |
| [16] |
VON MERING C, JENSEN L J, SNEL B, et al. STRING:known and predicted protein-protein associations, integrated and transferred across organisms[J]. Nucleic Acids Research, 2005, 33(Database issue):D433-D437. DOI: 10.1093/nar/gki005.
doi: 10.1093/nar/gki005 |
| [17] |
LIU J L, LIU J J, SHEN F X, et al. Systems pharmacology analysis of synergy of TCM:An example using saffron formula[J]. Scientific Reports, 2018, 8(1):380. DOI: 10.1038/s41598-017-18764-2.
doi: 10.1038/s41598-017-18764-2 |
| [18] |
MOMOTA R, OHTSUKA A. Network of anatomical texts (NAnaTex), an open-source project for visualizing the interaction between anatomical terms[J]. Anatomical Science International, 2018, 93(1):149-153. DOI: 10.1007/s12565-017-0410-1.
doi: 10.1007/s12565-017-0410-1 |
| [19] |
LI S, ZHANG Z Q, WU L J, et al. Understanding ZHENG in traditional Chinese medicine in the context of neuro-endocrine-immune network[J]. IET Systems Biology, 2007, 1(1):51-60. DOI: 10.1049/iet-syb:20060032.
doi: 10.1049/iet-syb:20060032 |
| [20] |
IOANNIDIS I, MCNALLY B, WILLETTE M, et al. Plasticity and virus specificity of the airway epithelial cell immune response during respiratory virus infection[J]. Journal of Virology, 2012, 86(10):5422-5436. DOI: 10.1128/JVI.06757-11.
doi: 10.1128/JVI.06757-11 |
| [21] |
BENJAMINI Y, HOCHBERG Y. Controlling the false discovery rate:a practical and powerful approach to multiple testing[J]. Journal of the Royal Statistical Society:Series B (Methodological), 1995, 57(1):289-300. DOI: 10.1111/j.2517-6161.1995.tb02031.x.
doi: 10.1111/j.2517-6161.1995.tb02031.x. |
| [22] |
JO S, KIM S, SHIN D H, et al. Inhibition of SARS-CoV 3CL protease by flavonoids[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35(1):145-151. DOI: 10.1080/14756366.2019.1690480.
doi: 10.1080/14756366.2019.1690480 |
| [23] | 王登嵘, 刘显, 肖健. Src蛋白激酶在疾病中的功能及研究现状[J]. 医学与哲学(B), 2018, 39(1):58-60. |
| [24] |
张佳鑫, 蒋一凡, 雷昕诺, 等. Src和Abl酪氨酸蛋白激酶家族参与病原微生物感染的研究进展[J]. 微生物学通报, 2019, 46(10):2781-2786. DOI: 10.13344/j.microbiol.china.180793.
doi: 10.13344/j.microbiol.china.180793 |
| [25] | 郑刚. Src同源磷酸酪氨酸磷酸酶2促进α-干扰素诱导的jak/stat1信号通路从而抑制呼吸道合胞病毒复制[D]. 杭州: 浙江大学, 2015. |
| [26] |
RATTANAMAHAPHOOM J, LEAUNGWUTIWONG P, LIMKITTIKUL K, et al. Activation of dengue virus-specific T cells modulates vascular endothelial growth factor receptor 2 expression[J]. Asian Pacific Journal of Allergy and Immunology, 2017, 35(3):171-178. DOI: 10.12932/ap0810.
doi: 10.12932/ap0810 |
| [27] |
DARNELL J E, KERR I M, STARK G R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins[J]. Science, 1994, 264(5164):1415-1421. DOI: 10.1126/science.8197455.
doi: 10.1126/science.8197455 |
| [28] |
汤波, 韦佳佳, 徐丙发, 等. STAT1修饰对干扰素抗乙肝病毒作用影响的研究进展[J]. 安徽医科大学学报, 2017, 52(4):615-618. DOI: 10.19405/j.cnki.issn1000-1492.2017.04.035.
doi: 10.19405/j.cnki.issn1000-1492.2017.04.035 |
| [29] |
KVANSAKUL M, CARIA S, HINDS M. The bcl-2 family in host-virus interactions[J]. Viruses, 2017, 9(10):290. DOI: 10.3390/v9100290.
doi: 10.3390/v9100290 |
| [30] |
THOMAS K W, MONICK M M, STABER J M, et al. Respiratory syncytial virus inhibits apoptosis and induces NF-κB activity through a phosphatidylinositol 3-kinase-dependent pathway[J]. Journal of Biological Chemistry, 2002, 277(1):492-501. DOI: 10.1074/jbc.M108107200.
doi: 10.1074/jbc.M108107200 |
| [31] |
MONICK M M, CAMERON K, POWERS L S, et al. Sphingosine kinase mediates activation of extracellular signal-related kinase and Akt by respiratory syncytial virus[J]. American Journal of Respiratory Cell and Molecular Biology, 2004, 30(6):844-852. DOI: 10.1165/rcmb.2003-0424OC.
doi: 10.1165/rcmb.2003-0424OC |
| [32] |
BONSER L R, ERLE D J. Airway Mucus and Asthma:the role of MUC5AC and MUC5B[J]. Journal Clinical Medicine, 2017, 6(12):112. DOI: 10.3390/jcm6120112.
doi: 10.3390/jcm6120112 |
| [33] |
CURRIER M G, LEE S, STOBART C C, et al. EGFR interacts with the fusion protein of respiratory syncytial virus strain 2-20 and mediates infection and mucin expression[J]. PLoS Pathogens, 2016, 12(5):e1005622. DOI: 10.1371/journal.ppat.1005622.
doi: 10.1371/journal.ppat.1005622 |
| [34] | 刘娟娟, 张婷, 米芋枚. 呼吸道合胞病毒感染对气道上皮细胞表皮生长因子受体、紧密连接相关蛋白及黏蛋白表达的影响[J]. 中国当代儿科杂志, 2019, 21(3):294-299. |
|
||
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits third parties to freely share (i.e., copy and redistribute the material in any medium or format) and adapt (i.e., remix, transform, or build upon the material) the articles published in this journal, provided that appropriate credit is given, a link to the license is provided, and any changes made are indicated. The material may not be used for commercial purposes. For details of the CC BY-NC 4.0 license, please visit: https://creativecommons.org/licenses/by-nc/4.0