Shandong Science ›› 2022, Vol. 35 ›› Issue (3): 17-26.doi: 10.3976/j.issn.1002-4026.2022.03.003
• Pharmacology and Toxicology • Previous Articles Next Articles
LI Xiao-li(),YING Tian-hao,TANG Yi-di,ZHU Xuan,SUN Meng-meng,YU Tao,ZHAO Jia-ning,ZHANG Lei-ming*(
)
Received:
2021-04-14
Online:
2022-06-20
Published:
2022-06-10
Contact:
Lei-ming ZHANG
E-mail:544123522@163.com;zhangleiming2009@126.com
CLC Number:
LI Xiao-li,YING Tian-hao,TANG Yi-di,ZHU Xuan,SUN Meng-meng,YU Tao,ZHAO Jia-ning,ZHANG Lei-ming. Potential mechanism of Mahuangjiazhu Decoction in the treatment of rheumatoid arthritis based on network pharmacology combined with molecular docking technology[J].Shandong Science, 2022, 35(3): 17-26.
Table 1
Active ingredients of Mahuangjiazhu Decoction by OB value (top 20)"
编号 | 活性成分 | 来源 | ||
---|---|---|---|---|
MOL002311 | Glycyrol(甘草酚) | 甘草、杏仁 | ||
MOL012922 | l-SPD(左旋千金藤啶碱) | 杏仁 | ||
MOL004990 | 7,2',4'-trihydroxy-5-methoxy-3-arylcoumarin(7,2',4'-三羟基-5-甲氧基-3-苯基香豆素) | 甘草 | ||
MOL004904 | Licopyranocoumarin(甘草吡喃香豆素) | 甘草 | ||
MOL004891 | Shinpterocarpin | 甘草 | ||
MOL007207 | Machiline(乌药碱) | 杏仁 | ||
MOL005017 | Phaseol | 甘草、杏仁 | ||
MOL004841 | Licochalcone B(甘草查尔酮B) | 甘草、杏仁 | ||
MOL004810 | glyasperin F(粗毛甘草素F) | 甘草 | ||
MOL001484 | Inermine(高丽槐素) | 甘草 | ||
MOL000500 | Vestitol(维斯体素) | 甘草 | ||
MOL005007 | Glyasperins M(粗毛甘草素M) | 甘草 | ||
MOL005190 | Eriodictyol(圣草酚) | 麻黄 | ||
MOL004941 | (2R)-7-hydroxy-2-(4-hydroxyphenyl)chroman-4-one | 甘草 | ||
MOL004959 | 1-Methoxyphaseollidin(1-甲氧基菜豆素) | 甘草 | ||
MOL000392 | Formononetin(刺芒柄花素) | 甘草 | ||
MOL003410 | Ziziphin_qt | 杏仁 | ||
MOL004863 | 3-(3,4-dihydroxyphenyl)-5,7-dihydroxy-8-(3-methylbut-2-enyl)chromone | 甘草 | ||
MOL004903 | Liquiritin(甘草苷) | 甘草、杏仁 | ||
MOL004808 | glyasperin B(粗毛甘草素B) | 甘草 |
Table 2
Core target information"
靶点 | 靶点名称 | 度值 | 靶点 | 靶点名称 | 度值 |
---|---|---|---|---|---|
IL-6 | 白介素6 | 65 | MMP9 | 基质金属蛋白酶-9 | 42 |
TNF | 肿瘤坏死因子 | 58 | EGF | 促表皮生长因子 | 41 |
TP53 | 细胞肿瘤抗原 p53 | 55 | EGFR | 表皮生长因子受体 | 40 |
STAT3 | 信号转导和转录激活因子3 | 55 | PTGS2 | 前列腺素内过氧化物合酶 2 | 40 |
AKT1 | 蛋白激酶B | 54 | CCL2 | C-C趋化因子 2 | 39 |
VEGFA | 血管内皮生长因子 A | 53 | RELA | 转录因子p65 | 39 |
CXCL8 | 白介素8 | 50 | APP | 淀粉样前体蛋白 | 37 |
JUN | c-Jun氨基末端激酶 | 50 | ICAM1 | 胞间黏附分子 1 | 37 |
MAPK8 | 丝裂原活化蛋白激酶 8 | 49 | MYC | Myc原癌基因蛋白 | 36 |
MAPK1 | 丝裂原活化蛋白激酶 1 | 48 | IL-10 | 白介素10 | 36 |
IL-1β | 白介素1-β | 47 | SRC | 类固醇受体共激活因子 | 35 |
Table 3
Docking results of compounds in Mahuangjiazhu Decoction with top 10 targets sequencing in protein-protein interaction network"
活性成分 | 结合自由能/(kJ·mol-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
AKT1 | PTGS2 | MAPK1 | MAPK8 | RELA | STAT3 | CXCL8 | IL1B | IL6 | TNF | |
槲皮素 | -9.5 | -9.6 | -8.4 | -7.6 | -7.3 | -7.3 | -6.6 | -7.0 | -7.1 | -6.7 |
木犀草素 | -9.5 | -9.4 | -8.4 | -8.1 | -6.9 | -7.8 | -6.5 | -6.8 | -7.0 | -6.2 |
山奈酚 | -9.5 | -9.7 | -8.2 | -7.5 | -7.3 | -7.0 | -6.7 | -6.7 | -6.7 | -6.3 |
柚皮素 | -9.6 | -9.1 | -7.9 | -7.6 | -7.0 | -7.7 | -6.3 | -6.9 | -6.8 | -6.4 |
刺芒柄花素 | -9.7 | -9.1 | -7.9 | -7.5 | -7.1 | -6.9 | -6.8 | -6.4 | -6.3 | -5.8 |
甘草酚 | -10.6 | -10.3 | -9.3 | -8.9 | -7.1 | -7.7 | -6.8 | -7.2 | -6.6 | -6.9 |
花旗松素 | -9.6 | -9.4 | -8.1 | -7.8 | -7.0 | -7.4 | -6.6 | -7.1 | -6.7 | -6.5 |
(+)-儿茶素 | -9.9 | -9.2 | -8.5 | -8.8 | -7.5 | -7.4 | -7.2 | -7.7 | -7.3 | -7.3 |
甘草查尔酮 B | -9.5 | -8.5 | -7.4 | -7.2 | -6.6 | -6.6 | -6.0 | -6.4 | -6.2 | -5.8 |
Phaseol | -11.2 | -10.2 | -9.4 | -9.0 | -7.7 | -8.1 | -7.0 | -7.3 | -7.7 | -7.3 |
光甘草定 | -9.7 | -8.4 | -8.0 | -8.8 | -8.6 | -7.7 | -6.8 | -7.5 | -7.3 | -6.4 |
β-谷甾醇 | -10.8 | -8.3 | -9.1 | -8.7 | -6.9 | -7.9 | -6.9 | -7.7 | -7.3 | -7.0 |
[1] |
LIU W, FAN Y H, TIAN C Y, et al. Deciphering the molecular targets and mechanisms of HGWD in the treatment of rheumatoid arthritis via network pharmacology and molecular docking[J]. Evidence Based Complementary and Alternative Medicine, 2020, 2020: 7151634. DOI: 10.1155/2020/7151634.
doi: 10.1155/2020/7151634 |
[2] |
SPARKS J A. Rheumatoid arthritis[J]. Annals of Internal Medicine, 2019, 170(1): ITC1. DOI: 10.7326/aitc201901010.
doi: 10.7326/aitc201901010 |
[3] |
RHEUMATOID A. Rheumatoid arthritis[J]. Nature Reviews Disease Primers, 2018, 4: 18002. DOI: 10.1038/nrdp.2018.2.
doi: 10.1038/nrdp.2018.2 |
[4] |
FIRESTEIN G S, MCINNES I B. Immunopathogenesis of rheumatoid arthritis[J]. Immunity, 2017, 46(2): 183-196.DOI: 10.1016/j.immuni.2017.02.006.
doi: 10.1016/j.immuni.2017.02.006 |
[5] |
ALETAHA D, SMOLEN J S. Diagnosis and management of rheumatoid arthritis: A review[J]. JAMA, 2018, 320(13): 1360-1372. DOI: 10.1001/jama.2018.13103.
doi: 10.1001/jama.2018.13103 |
[6] |
van VOLLENHOVEN R. Treat-to-target in rheumatoid arthritis:are we there yet?[J]. Nature Reviews Rheumatology, 2019, 15(3): 180-186. DOI: 10.1038/s41584-019-0170-5.
doi: 10.1038/s41584-019-0170-5 |
[7] |
RUTHERFORD A I, PATARATA E, SUBESINGHE S, et al. Opportunistic infections in rheumatoid arthritis patients exposed to biologic therapy: Results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis[J]. Rheumatology, 2018, 57(6): 997-1001. DOI: 10.1093/rheumatology/key023.
doi: 10.1093/rheumatology/key023 |
[8] |
周春瑜, 陈艳林, 付庭娜, 等. 中医辨治类风湿关节炎的研究进展[J]. 风湿病与关节炎, 2020, 9(10): 72-75. DOI: 10.3969/j.issn.2095-4174.2020.10.020.
doi: 10.3969/j.issn.2095-4174.2020.10.020 |
[9] |
徐茂林. 经方辨治类风湿性关节炎一得[J]. 国医论坛, 2007(1): 9-10. DOI: 10.3969/j.issn.1002-1078.2007.01.005.
doi: 10.3969/j.issn.1002-1078.2007.01.005 |
[10] |
张瑞. 《金匮要略》痹病病因证治探析[J]. 中医研究, 2020, 33(12): 1-3.DOI: 10.3969/j.issn.1001-6910.2020.12.01.
doi: 10.3969/j.issn.1001-6910.2020.12.01 |
[11] | 杜以梅. 经方在痹证治疗中的应用研究[D]. 南京: 南京中医药大学, 2007. |
[12] |
张安东. 麻黄加术汤加味应用于风湿病的临床研究进展[J]. 光明中医, 2019, 34(23):3694-3696. DOI: 10.3969/j.issn.1003-8914.2019.23.065.
doi: 10.3969/j.issn.1003-8914.2019.23.065 |
[13] | 邓慧芳. 基于源流梳理及名词考据的仲景微汗法应用阐释与实证研究[D]. 北京: 北京中医药大学, 2018. |
[14] |
徐琦, 尹抗抗, 谭达全, 等. 麻黄加术汤对大鼠类风湿性关节炎模型作用机制的研究[J]. 湖南中医药大学学报, 2011, 31(5): 13-15. DOI: 10.3969/j.issn.1674-070X.2011.05.004.013.03.
doi: 10.3969/j.issn.1674-070X.2011.05.004.013.03 |
[15] |
徐琦, 王红梅, 谭达全. 类风湿性关节炎患者外周血T细胞亚群经麻黄加术汤干预前后变化的研究[J]. 湖南中医杂志, 2014, 30(11): 157-159. DOI: 10.16808/j.cnki.issn1003-7705.2014.11.077.
doi: 10.16808/j.cnki.issn1003-7705.2014.11.077 |
[16] |
解静, 高杉, 李琳, 等. 网络药理学在中药领域中的研究进展与应用策略[J]. 中草药, 2019, 50(10): 2257-2265. DOI: 10.7501/j.issn.0253-2670.2019.10.001.
doi: 10.7501/j.issn.0253-2670.2019.10.001 |
[17] |
SHI X Q, YUE S J, TANG Y P, et al. A network pharmacology approach to investigate the blood enriching mechanism of Danggui buxue Decoction[J]. Journal of Ethnopharmacology, 2019, 235: 227-242. DOI: 10.1016/j.jep.2019.01.027.
doi: 10.1016/j.jep.2019.01.027 |
[18] |
HSIN K Y, GHOSH S, KITANO H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology[J]. PLoS One. 2013, 8(12): e83922. DOI: 10.1371/journal.pone.0083922.
doi: 10.1371/journal.pone.0083922 |
[19] |
葛高月, 郑新春. 类风湿关节炎中西医治疗进展[J]. 辽宁中医药大学学报, 2021, 23(2): 84-89. DOI: 10.13194/j.issn.1673-842x.2021.02.019.
doi: 10.13194/j.issn.1673-842x.2021.02.019 |
[20] |
黄裕成. 麻黄加术汤治疗类风湿性关节炎的临床观察[J]. 光明中医, 2018, 33(5): 676-678. DOI: 10.3969/j.issn.1003-8914.2018.05.035.
doi: 10.3969/j.issn.1003-8914.2018.05.035 |
[21] |
魏斐菲. 麻黄加术汤加味疗法治疗风湿病临床研究[J]. 亚太传统医药, 2017, 13(6):144-145. DOI: 10.11954/ytctyy.201706063.
doi: 10.11954/ytctyy.201706063 |
[22] |
XUE H M, TU Y H, MA T, et al. Lactoferrin inhibits IL-1β-induced chondrocyte apoptosis through AKT1-induced CREB1 activation[J]. Cellular Physiology and Biochemistry, 2015, 36(6): 2456-2465. DOI: 10.1159/000430206.
doi: 10.1159/000430206 |
[23] | ZHAO X Y, WANG T J, CAI B, et al. MicroRNA-495 enhances chondrocyte apoptosis, senescence and promotes the progression of osteoarthritis by targeting AKT1[J]. American Journal of Translational Research, 2019, 11(4): 2232-2244. |
[24] |
MIYASHITA T, KAWAKAMI A, MAMI T M, et al. Akt is an endogenous inhibitor toward tumor necrosis factor-related apoptosis inducing ligand-mediated apoptosis in rheumatoid synovial cells[J]. Biochemical and Biophysical Research Communications, 2003, 312(2): 397-404.DOI: 10.1016/j.bbrc.2003.10.141.
doi: 10.1016/j.bbrc.2003.10.141 |
[25] |
LIU H T, POPE R M. The role of apoptosis in rheumatoid arthritis[J]. Current Opinion in Pharmacology, 2003, 3(3): 317-322. DOI: 10.1016/S1471-4892(03)00037-7.
doi: 10.1016/S1471-4892(03)00037-7 |
[26] |
DAI Q D, ZHOU D, XU L P, et al. Curcumin alleviates rheumatoid arthritis-induced inflammation and synovial hyperplasia by targeting mTOR pathway in rats[J]. Drug Design, Development and Therapy, 2018, 12: 4095-4105. DOI: 10.2147/DDDT.S175763.
doi: 10.2147/DDDT.S175763 |
[27] |
YE Y, BAO C D, FAN W. Overexpression of miR-101 may target DUSP1 to promote the cartilage degradation in rheumatoid arthritis[J]. Journal of Computational Biology, 2019, 26(10): 1067-1079. DOI: 10.1089/cmb.2019.0021.
doi: 10.1089/cmb.2019.0021 |
[28] |
范星宇, 洪梦琴, 杨敏. IL-6与类风湿关节炎的关系及作用机制的研究进展[J]. 世界最新医学信息文摘, 2019, 19(86): 65. DOI: 10.19613/j.cnki.1671-3141.2019.86.026.
doi: 10.19613/j.cnki.1671-3141.2019.86.026 |
[29] |
REDLICH K, SMOLEN J S. Inflammatory bone loss: Pathogenesis and therapeutic intervention[J]. Nature Reviews Drug Discovery, 2012, 11(3): 234-250. DOI: 10.1038/nrd3669.
doi: 10.1038/nrd3669 |
[30] |
WANG M L, LI H Y, WANG Y F, et al. Anti-rheumatic properties ofgentiopicroside are associated with suppression of ROS-NF-κB-NLRP3 axis in fibroblast-like synoviocytes and NF-κB pathway in adjuvant-induced arthritis[J]. Frontiers in Pharmacology, 2020, 11: 515. DOI: 10.3389/fphar.2020.00515.
doi: 10.3389/fphar.2020.00515 |
[31] |
CHOW Y Y, CHIN K Y. The role of inflammation in the pathogenesis of osteoarthritis[J]. Mediators of Inflammation, 2020, 2020: 8293921. DOI: 10.1155/2020/8293921.
doi: 10.1155/2020/8293921 |
[32] |
CHENG B C Y, FU X Q, GUO H, et al. The genus Rosa and arthritis: overview on pharmacological perspectives[J]. Pharmacological Research, 2016, 114: 219-234. DOI: 10.1016/j.phrs.2016.10.029.
doi: 10.1016/j.phrs.2016.10.029 |
[33] | MILLERAND M, BERENBAUM F, JACQUES C. Danger signals andinflammaging in osteoarthritis[J]. Clinical and Experimental Rheumatology, 2019, 37(5): 48-56. |
[34] |
BONAVENTURA P, LAMBOUX A, ALBARÈDE F, et al. Differential effects of TNF-α and IL-1β on the control of metal metabolism and cadmium-induced cell death in chronic inflammation[J]. PLoS One, 2018, 13(5): e0196285. DOI: 10.1371/journal.pone.0196285.
doi: 10.1371/journal.pone.0196285 |
[35] |
HU X M, TANG J H, ZENG G, et al. RGS1 silencing inhibits the inflammatory response and angiogenesis in rheumatoid arthritis rats through the inactivation of Toll-like receptor signaling pathway[J]. Journal of Cellular Physiology, 2019, 234(11): 20432-20442. DOI: 10.1002/jcp.28645.
doi: 10.1002/jcp.28645 |
[36] |
ARLEEVSKAYA M I, LARIONOVA R V, BROOKS W H, et al. Toll-like receptors, infections, and rheumatoid arthritis[J]. Clinical Reviews in Allergy & Immunology, 2020, 58(2): 172-181. DOI: 10.1007/s12016-019-08742-z.
doi: 10.1007/s12016-019-08742-z |
[37] |
YUAN K, ZHU Q Q, LU Q Y, et al. Quercetin alleviates rheumatoid arthritis by inhibiting neutrophil inflammatory activities[J]. The Journal of Nutritional Biochemistry, 2020, 84: 108454. DOI: 10.1016/j.jnutbio.2020.108454.
doi: 10.1016/j.jnutbio.2020.108454 |
[38] |
HOU Y N, WU J C, HUANG Q, et al. Luteolin inhibits proliferation and affects the function of stimulated rat synovial fibroblasts[J]. Cell Biology International, 2009, 33(2): 135-147.DOI: 10.1016/j.cellbi.2008.10.005.
doi: 10.1016/j.cellbi.2008.10.005 |
[39] |
PAN D M, LI N, LIU Y Y, et al. Kaempferol inhibits the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes by blocking activation of the MAPK pathway[J]. International Immunopharmacology, 2018, 55: 174-182. DOI: 10.1016/j.intimp.2017.12.011.
doi: 10.1016/j.intimp.2017.12.011 |
|