Shandong Science ›› 2023, Vol. 36 ›› Issue (6): 121-130.doi: 10.3976/j.issn.1002-4026.2023.06.015
• Environment and Ecology • Previous Articles
WANG Xiaokai(
), ZHAO Changsheng(
), LI Luzhen, ZHANG Bowei, LIU Xuzhen, TAN Yu
Received:2023-04-18
Published:2023-12-20
Online:2023-12-07
CLC Number:
WANG Xiaokai, ZHAO Changsheng, LI Luzhen, ZHANG Bowei, LIU Xuzhen, TAN Yu. Research progress in high-salinity wastewater treatment by the freeze concentration method[J].Shandong Science, 2023, 36(6): 121-130.
Table 1
Source and composition of industrial high-salinity wastewater"
| 高产盐行业 | 废水来源 | 主要成分 | 参考文献 |
|---|---|---|---|
| 印染工业 | 染料生产废水、印染工艺废水等 | 氯化钠、硫酸钠等 | [ |
| 造纸业 | 洗浆废水、抄纸废水等 | 木质素、有机酸盐、硫酸钠、次氯酸盐等 | [ |
| 煤化工业 | 洗涤废水、冷凝废水等 | 高浓度酚、氨化合物及有机物,水质成分复杂 | [ |
| 炼油工业 | 精制和蒸馏过程的冷凝水、裂化和重整装置排水等 | 硫化物、挥发酚、氨氮等 | [ |
| 制药业 | 结晶等工艺生产废水、过滤机等冲洗废水等 | 酸、碱化合物及多种有机物 | [ |
Table 3
Advantages and disadvantages of three freezing composite methods for ice crystal purification"
| 复合冷冻浓缩法 | 优点 | 缺点 | 最佳脱盐率 | 参考文献 |
|---|---|---|---|---|
| 冷冻-加水-离心(FWCM) | 稀释冰晶表面的浓缩液,降低冰晶黏度,操作简单 | 出水产率降低,经济性差 | 93.2% | [ |
| 冷冻-浸泡-离心(FSCM) | 浸泡液与冰晶接触面广,节省时间,所需浸泡液简单易取 | 浸泡导致冰晶融化,产冰率降低 | 96.0% | [ |
| 冷冻-重力-离心(FGCM) | 出水产率高,处理效果最好,操作简单 | 处理时间长 | 99.8% | [ |
| [1] | FANG J M, SHI C C, ZHANG L, et al. Kinetic characteristics of evaporative crystallization desalination of acidic high-salt wastewater[J]. Chemical Engineering Research and Design, 2022, 187: 129-139. DOI: 10.1016/j.cherd.2022.08.035. |
| [2] | LI Y H, LUO Z, GUO F B, et al. The culture of salt-tolerant strains and its degradation performance of high-salt organic wastewater[J]. IOP Conference Series: Earth and Environmental Science, 2021, 631(1): 012029. DOI: 10.1088/1755-1315/631/1/012029. |
| [3] | 缪冬塬. 共建清洁美丽世界之工业废水治理篇[J]. 中国环保产业, 2022(5): 50-56. DOI: 10.3969/j.issn.1006-5377.2022.05.011. |
| [4] | NĂSTASE G, PEREZ P A, ŞERBAN A, et al. Advantages of isochoric freezing for food preservation: a preliminary analysis[J]. International Communications in Heat and Mass Transfer, 2016, 78: 95-100. DOI: 10.1016/j.icheatmasstransfer.2016.08.026. |
| [5] | LATIL P, ZENNOUNE A, NDOYE F T, et al. X-ray microtomography of ice crystal formation and growth in a sponge cake during its freezing and storage[J]. Journal of Food Engineering, 2022, 325: 110989. DOI: 10.1016/j.jfoodeng.2022.110989. |
| [6] | PENG K W, YANG H K, YIN H B, et al. Integrated and intelligently controlled unit for suspension freeze concentration: design and experimental verification[J]. Instrumentation Science & Technology, 2022, 50(1): 16-31. DOI: 10.1080/10739149.2021.1945621. |
| [7] | 国家环境保护总局. 污水综合排放标准:GB 8978—1996[S]. 北京: 中国标准出版社,1996. |
| [8] | RAFIQUE M, HAJRA S, TAHIR M B, et al. A review on sources of heavy metals, their toxicity and removal technique using physico-chemical processes from wastewater[J]. Environmental Science and Pollution Research International, 2022, 29(11): 16772-16781. DOI: 10.1007/s11356-022-18638-9. |
| [9] | EWUZIE U, SALIU O D, DULTA K, et al. A review on treatment technologies for printing and dyeing wastewater (PDW)[J]. Journal of Water Process Engineering, 2022, 50: 103273. DOI: 10.1016/j.jwpe.2022.103273. |
| [10] | LI N J, AN X J, XIAO X S, et al. Recent advances in the treatment of lignin in papermaking wastewater[J]. World Journal of Microbiology and Biotechnology, 2022, 38(7): 116. DOI: 10.1007/s11274-022-03300-w. |
| [11] | SHI J X, HUANG W P, HAN H J, et al. Review on treatment technology of salt wastewater in coal chemical industry of China[J]. Desalination, 2020, 493: 114640. DOI: 10.1016/j.desal.2020.114640. |
| [12] | DAFLON S D A, GUERRA I L, REYNIER M V, et al. Toxicity identification and evaluation (TIE) of a petroleum refinery wastewater[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2017, 52(9): 842-848. DOI: 10.1080/10934529.2017.1312186. |
| [13] | SHETE B, SHINKAR N. Dairy industry wastewater sources, characteristics & its effects on environment[J]. International Journal of Current Engineering and Technology. 2013, 3(5): 1611-1615. |
| [14] | SI Z T, GUO J C, XIANG J W. Study on the operation characteristic and transfer resistance of mechanical vapor recompression and vacuum membrane distillation system under multiple working conditions[J]. Separation and Purification Technology, 2022, 299: 121728. DOI: 10.1016/j.seppur.2022.121728. |
| [15] | LIU B B, GOVINDAN R, MUTHUCHAMY M, et al. Halophilic Archaea and their extracellular polymeric compounds in the treatment of high salt wastewater containing phenol[J]. Chemosphere, 2022, 294: 133732. DOI: 10.1016/j.chemosphere.2022.133732. |
| [16] | NG K K, SHI X Q, ONG S L, et al. An innovative of aerobic bio-entrapped salt marsh sediment membrane reactor for the treatment of high-saline pharmaceutical wastewater[J]. Chemical Engineering Journal, 2016, 295: 317-325. DOI: 10.1016/j.cej.2016.03.046. |
| [17] | ADENIYI A, MBAYA R K K, ONYANGO M S, et al. Efficient suspension freeze desalination of mine wastewaters to separate clean water and salts[J]. Environmental Chemistry Letters, 2016, 14(4): 449-454. DOI: 10.1007/s10311-016-0562-6. |
| [18] | SHUM E, PAPANGELAKIS V. Water recovery from inorganic solutions via natural freezing and melting[J]. Journal of Water Process Engineering, 2019, 31: 100787. DOI: 10.1016/j.jwpe.2019.100787. |
| [19] | AN L Y, DAI Z, DI B, et al. Advances in cytochemistry: Mechanisms,reactions and applications[J]. Molecules, 2021, 26(3): 750. DOI: 10.3390/molecules26030750. |
| [20] |
YODA T, MIYAKI H, SAITO T. Freeze concentrated apple juice maintains its flavor[J]. Scientific Reports, 2021, 11: 12679. DOI: 10.1038/s41598-021-92274-0.
pmid: 34135439 |
| [21] | ALVI T, KHAN M K I, MAAN A A, et al. Modelling and kinetic study of novel and sustainable microwave-assisted dehydration of sugarcane juice[J]. Processes, 2019, 7(10): 712. DOI: 10.3390/pr7100712. |
| [22] | PETZOLD G, ORELLANA P, MORENO J, et al. Vacuum-assisted block freeze concentration applied to wine[J]. Innovative Food Science & Emerging Technologies, 2016, 36: 330-335. DOI: 10.1016/j.ifset.2016.07.019. |
| [23] | PRESTES A A, HELM C V, ESMERINO E A, et al. Freeze concentration techniques as alternative methods to thermal processing in dairy manufacturing: A review[J]. Journal of Food Science, 2022, 87(2): 488-502. DOI: 10.1111/1750-3841.16027. |
| [24] | LIU Y, MING T Z, WU Y J, et al. Desalination of seawater by spray freezing in a natural draft tower[J]. Desalination, 2020, 496: 114700. DOI: 10.1016/j.desal.2020.114700. |
| [25] | BADAWY S M. Laboratory freezing desalination of seawater[J]. Desalination and Water Treatment, 2016, 57(24): 11040-11047. DOI: 10.1080/19443994.2015.1041163. |
| [26] | LIN W S, HUANG M B, GU A Z. A seawater freeze desalination prototype system utilizing LNG cold energy[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18691-18698. DOI: 10.1016/j.ijhydene.2017.04.176. |
| [27] | LU Q F, JEONG B G, LAI S R, et al. Performance comparison of EGSB and IC reactors for treating high-salt fatty acid organic production wastewater[J]. Processes, 2022, 10(7): 1295. DOI: 10.3390/pr10071295. |
| [28] |
XU C B, KOLLIOPOULOS G, PAPANGELAKIS V. Industrial water recovery via layer freeze concentration[J]. Separation and Purification Technology. 2022, 292: 121029.
doi: 10.1016/j.seppur.2022.121029 |
| [29] | WANG Y Y, LI Y X, WU G X. SRT contributes significantly to sludge reduction in the OSA-based activated sludge process[J]. Environmental Technology, 2017, 38(3): 305-315. DOI: 10.1080/09593330.2016.1192223. |
| [30] |
YUAN W, ZHANG L H, CHANG Y L, et al. Treatment of biofuel production wastewater by a combined freezing method for resources recovery and waste reduction[J]. Science of The Total Environment. 2021, 774: 145173.
doi: 10.1016/j.scitotenv.2021.145173 |
| [31] | 金秋冬, 张维佳, 黄玉成, 等. 渐进冷冻法处理工业废水的研究[J]. 江苏化工, 2008, 36(5): 39-42. |
| [32] | VUIST J E, BOOM R M, SCHUTYSER M A I. Progressive freeze concentration of whey protein-sucrose-salt mixtures[J]. Innovative Food Science & Emerging Technologies, 2021, 74: 102829. DOI: 10.1016/j.ifset.2021.102829. |
| [33] | FENG W L, YIN Y, de LOURDES MENDOZA M, et al. Oil recovery from waste cutting fluid via the combination of suspension crystallization and freeze-thaw processes[J]. Journal of Cleaner Production, 2018, 172: 481-487. DOI: 10.1016/j.jclepro.2017.09.281. |
| [34] | LE H Q, NGUYEN T X Q, CHEN S S, et al. Application of progressive freezing on forward osmosis draw solute recovery[J]. Environmental Science and Pollution Research, 2020, 27(28): 34664-34674. DOI: 10.1007/s11356-019-06079-w. |
| [35] | CHEN D, ZHANG C S, RONG H W, et al. Experimental study on seawater desalination through supercooled water dynamic ice making[J]. Desalination, 2020, 476: 114233. DOI: 10.1016/j.desal.2019.114233. |
| [36] | 张莹, 张超杰, 周琪. 冷冻法废水处理技术的研究与应用[J]. 水处理技术, 2013, 39(7): 6-10. DOI: 10.16796/j.cnki.1000-3770.2013.07.002. |
| [37] | LIU T S, ZHANG Y, TANG Y Q, et al. Application of progressive freeze concentration in the removal of Ca2+ from wastewater[J]. Journal of Water Process Engineering, 2022, 46: 102619. DOI: 10.1016/j.jwpe.2022.102619. |
| [38] | MOHARRAMZADEH S, ONG S K, ALLEMAN J, et al. Parametric study of the progressive freeze concentration for desalination[J]. Desalination, 2021, 510: 115077. DOI: 10.1016/j.desal.2021.115077. |
| [39] | TERAOKA Y, SAITO A, OKAWA S. Ice crystal growth in supercooled solution[J]. International Journal of Refrigeration, 2002, 25(2): 218-225. DOI: 10.1016/s0140-7007(01)00082-2. |
| [40] | MAZLI W A, SAMSURI S, AMRAN N A. Study of progressive freeze concentration and eutectic freeze crystallization technique for salt recovery[J]. IOP Conference Series: Materials Science and Engineering, 2020, 778(1): 012167. DOI: 10.1088/1757-899x/778/1/012167. |
| [41] | 陈晓远, 闫莹, 范成李, 等. 悬浮结晶法预处理敌草胺生产废水[J]. 化工环保, 2019, 39(2): 163-167. DOI: 10.3969/j.issn.1006-1878.2019.02.009. |
| [42] |
YIN Y, YANG Y, de LOURDES MENDOZA M, et al. Progressive freezing and suspension crystallization methods for tetrahydrofuran recovery from Grignard reagent wastewater[J]. Journal of cleaner production. 2017, 144: 180-186.
doi: 10.1016/j.jclepro.2017.01.012 |
| [43] |
MOUNTADAR S, GUESSOUS M, RICH A, et al. Desalination of spent ion-exchange resin regeneration solutions by suspension freeze crystallization[J]. Desalination. 2019, 468: 114059.
doi: 10.1016/j.desal.2019.06.025 |
| [44] | HU R, ZHANG C, ZHANG X L, et al. Research status of supercooled water ice making: a review[J]. Journal of Molecular Liquids, 2022, 347: 118334. DOI: 10.1016/j.molliq.2021.118334. |
| [45] | HASAN M, LOUHI-KULTANEN M. Ice growth kinetics modeling of air-cooled layer crystallization from sodium sulfate solutions[J]. Chemical Engineering Science, 2015, 133: 44-53. DOI: 10.1016/j.ces.2015.01.050. |
| [46] | YUAN W, LV W J, WANG H L, et al. Performance prediction of suspension freeze crystallization for the treatment of liquid hazardous wastes via machine learning methods[J]. Journal of Cleaner Production, 2021, 329: 129629. DOI: 10.1016/j.jclepro.2021.129629. |
| [47] | ZIKALALA N, MAREE J P, ZVINOWANDA C, et al. Treatment of sulphate wastewater by freeze desalination[J]. Desalinationand Water Treatment, 2017, 79: 93-102. DOI: 10.5004/dwt.2017.20927. |
| [48] |
KLOTZ S, KOMATSU K, PIETRUCCI F, et al. Ice VII from aqueous salt solutions: From a glass to a crystal with broken H-bonds[J]. Scientific Reports, 2016, 6: 32040. DOI: 10.1038/srep32040.
pmid: 27562476 |
| [49] | YANG H, SUN Z Y, ZHAN Z L, et al. Effects of watering parameters in a combined seawater desalination process[J]. Desalination, 2018, 425: 77-85. DOI: 10.1016/j.desal.2017.10.014. |
| [50] |
DARMALI C, MANSOURI S, YAZDANPANAH N, et al. Mechanisms and control of impurities in continuous crystallization: a review[J]. Industrial & Engineering Chemistry Research. 2018, 58(4): 1463-1479.
doi: 10.1021/acs.iecr.8b04560 |
| [51] | ZHANG H T, JANAJREH I, HASSAN ALI M I, et al. Freezing desalination: heat and mass validated modeling and experimental parametric analyses[J]. Case Studies in Thermal Engineering, 2021, 26: 101189. DOI: 10.1016/j.csite.2021.101189. |
| [52] | 付梦晓. 基于冷冻过程的复合脱盐实验研究[D]. 北京: 北京建筑大学, 2020. |
| [53] |
YANG H, JIANG Y F, WANG R, et al. Effects of the soaking-related parameters in a combined freezing-based seawater desalination process[J]. Environmental Science and Pollution Research International, 2022, 29(34): 52162-52174. DOI: 10.1007/s11356-022-19601-4.
pmid: 35260980 |
| [54] | 江苑菲. 高盐高有机物废水处理的冷冻复合方法研究[D]. 北京: 北京建筑大学, 2021. |
| [55] | YANG H, FU M X, ZHAN Z L, et al. Study on combined freezing-based desalination processes with microwave treatment[J]. Desalination, 2020, 475: 114201. DOI: 10.1016/j.desal.2019.114201. |
| [56] |
HOU Y, SUN X Y, DOU M J, et al. Cellulose nanocrystals facilitate needle-like ice crystal growth and modulate molecular targeted ice crystal nucleation[J]. Nano Letters, 2021, 21(11): 4868-4877. DOI: 10.1021/acs.nanolett.1c00514.
pmid: 33819045 |
| [57] |
MOCHIZUKI K, QIU Y Q, MOLINERO V. Promotion of homogeneous ice nucleation by soluble molecules[J]. Journal of the American Chemical Society, 2017, 139(47): 17003-17006. DOI: 10.1021/jacs.7b09549.
pmid: 29111694 |
| [58] | JIA L S, CUI W, CHEN Y, et al. Effect of ultrasonic power on super-cooling of TiO2 nanoparticle suspension[J]. International Journal of Heat and Mass Transfer, 2018, 120: 909-913. DOI: 10.1016/j.ijheatmasstransfer.2017.12.128. |
| [59] | GAI S L, PENG Z B, MOGHTADERI B, et al. Ice nucleation of water droplet containing solid particles under weak ultrasonic vibration[J]. Ultrasonics Sonochemistry, 2021, 70: 105301. DOI: 10.1016/j.ultsonch.2020.105301. |
| [60] | TIAN Y, ZHANG P Z, ZHU Z W, et al. Development of a single/dual-frequency orthogonal ultrasound-assisted rapid freezing technique and its effects on quality attributes of frozen potatoes[J]. Journal of Food Engineering, 2020, 286: 110112. DOI: 10.1016/j.jfoodeng.2020.110112. |
| [61] | WANG Z, LI B G, LUO Q Q, et al. Research on energy saving of ultrasonic wave in the process of making sea-slurry ice[J]. Energy Conversion and Management, 2021, 247: 114541. DOI: 10.1016/j.enconman.2021.114541. |
| [62] | GAO P H, CHENG B, ZHOU X Y, et al. Study on droplet freezing characteristic by ultrasonic[J]. Heat and Mass Transfer, 2017, 53(5): 1725-1734. DOI: 10.1007/s00231-016-1934-y. |
| [63] |
GROSSIER R, LOUISNARD O, VARGAS Y. Mixture segregation by an inertial cavitation bubble[J]. Ultrasonics Sonochemistry, 2007, 14(4): 431-437. DOI: 10.1016/j.ultsonch.2006.10.010.
pmid: 17208505 |
| [64] | SACLIER M, PECZALSKI R, ANDRIEU J. Effect of ultrasonically induced nucleation on ice crystals' size and shape during freezing in vials[J]. Chemical Engineering Science, 2010, 65(10): 3064-3071. DOI: 10.1016/j.ces.2010.01.035. |
| [65] | XIE C G, ZHANG L P, LIU Y H, et al. A direct contact type ice generator for seawater freezing desalination using LNG cold energy[J]. Desalination, 2018, 435: 293-300. DOI: 10.1016/j.desal.2017.04.002. |
| [66] | 陈晓远. 冷冻浓缩法废水处理及营养盐回收技术研究[D]. 上海: 华东理工大学, 2018. |
| [1] | JIA Quan, HU Li-min, REN Feng, ZHANG Jian-li, TIAN Hong-nian, LIU Shu-bin. Optimization of the freeze concentration process of ceftazidime mother liquor based on the response surface method [J]. Shandong Science, 2021, 34(5): 121-129. |
|
||
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits third parties to freely share (i.e., copy and redistribute the material in any medium or format) and adapt (i.e., remix, transform, or build upon the material) the articles published in this journal, provided that appropriate credit is given, a link to the license is provided, and any changes made are indicated. The material may not be used for commercial purposes. For details of the CC BY-NC 4.0 license, please visit: https://creativecommons.org/licenses/by-nc/4.0