Shandong Science ›› 2023, Vol. 36 ›› Issue (6): 121-130.doi: 10.3976/j.issn.1002-4026.2023.06.015
• Environment and Ecology • Previous Articles
WANG Xiaokai(), ZHAO Changsheng(), LI Luzhen, ZHANG Bowei, LIU Xuzhen, TAN Yu
Received:
2023-04-18
Online:
2023-12-20
Published:
2023-12-07
CLC Number:
WANG Xiaokai, ZHAO Changsheng, LI Luzhen, ZHANG Bowei, LIU Xuzhen, TAN Yu. Research progress in high-salinity wastewater treatment by the freeze concentration method[J].Shandong Science, 2023, 36(6): 121-130.
Table 3
Advantages and disadvantages of three freezing composite methods for ice crystal purification"
复合冷冻浓缩法 | 优点 | 缺点 | 最佳脱盐率 | 参考文献 |
---|---|---|---|---|
冷冻-加水-离心(FWCM) | 稀释冰晶表面的浓缩液,降低冰晶黏度,操作简单 | 出水产率降低,经济性差 | 93.2% | [ |
冷冻-浸泡-离心(FSCM) | 浸泡液与冰晶接触面广,节省时间,所需浸泡液简单易取 | 浸泡导致冰晶融化,产冰率降低 | 96.0% | [ |
冷冻-重力-离心(FGCM) | 出水产率高,处理效果最好,操作简单 | 处理时间长 | 99.8% | [ |
[1] | FANG J M, SHI C C, ZHANG L, et al. Kinetic characteristics of evaporative crystallization desalination of acidic high-salt wastewater[J]. Chemical Engineering Research and Design, 2022, 187: 129-139. DOI: 10.1016/j.cherd.2022.08.035. |
[2] | LI Y H, LUO Z, GUO F B, et al. The culture of salt-tolerant strains and its degradation performance of high-salt organic wastewater[J]. IOP Conference Series: Earth and Environmental Science, 2021, 631(1): 012029. DOI: 10.1088/1755-1315/631/1/012029. |
[3] | 缪冬塬. 共建清洁美丽世界之工业废水治理篇[J]. 中国环保产业, 2022(5): 50-56. DOI: 10.3969/j.issn.1006-5377.2022.05.011. |
[4] | NĂSTASE G, PEREZ P A, ŞERBAN A, et al. Advantages of isochoric freezing for food preservation: a preliminary analysis[J]. International Communications in Heat and Mass Transfer, 2016, 78: 95-100. DOI: 10.1016/j.icheatmasstransfer.2016.08.026. |
[5] | LATIL P, ZENNOUNE A, NDOYE F T, et al. X-ray microtomography of ice crystal formation and growth in a sponge cake during its freezing and storage[J]. Journal of Food Engineering, 2022, 325: 110989. DOI: 10.1016/j.jfoodeng.2022.110989. |
[6] | PENG K W, YANG H K, YIN H B, et al. Integrated and intelligently controlled unit for suspension freeze concentration: design and experimental verification[J]. Instrumentation Science & Technology, 2022, 50(1): 16-31. DOI: 10.1080/10739149.2021.1945621. |
[7] | 国家环境保护总局. 污水综合排放标准:GB 8978—1996[S]. 北京: 中国标准出版社,1996. |
[8] | RAFIQUE M, HAJRA S, TAHIR M B, et al. A review on sources of heavy metals, their toxicity and removal technique using physico-chemical processes from wastewater[J]. Environmental Science and Pollution Research International, 2022, 29(11): 16772-16781. DOI: 10.1007/s11356-022-18638-9. |
[9] | EWUZIE U, SALIU O D, DULTA K, et al. A review on treatment technologies for printing and dyeing wastewater (PDW)[J]. Journal of Water Process Engineering, 2022, 50: 103273. DOI: 10.1016/j.jwpe.2022.103273. |
[10] | LI N J, AN X J, XIAO X S, et al. Recent advances in the treatment of lignin in papermaking wastewater[J]. World Journal of Microbiology and Biotechnology, 2022, 38(7): 116. DOI: 10.1007/s11274-022-03300-w. |
[11] | SHI J X, HUANG W P, HAN H J, et al. Review on treatment technology of salt wastewater in coal chemical industry of China[J]. Desalination, 2020, 493: 114640. DOI: 10.1016/j.desal.2020.114640. |
[12] | DAFLON S D A, GUERRA I L, REYNIER M V, et al. Toxicity identification and evaluation (TIE) of a petroleum refinery wastewater[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2017, 52(9): 842-848. DOI: 10.1080/10934529.2017.1312186. |
[13] | SHETE B, SHINKAR N. Dairy industry wastewater sources, characteristics & its effects on environment[J]. International Journal of Current Engineering and Technology. 2013, 3(5): 1611-1615. |
[14] | SI Z T, GUO J C, XIANG J W. Study on the operation characteristic and transfer resistance of mechanical vapor recompression and vacuum membrane distillation system under multiple working conditions[J]. Separation and Purification Technology, 2022, 299: 121728. DOI: 10.1016/j.seppur.2022.121728. |
[15] | LIU B B, GOVINDAN R, MUTHUCHAMY M, et al. Halophilic Archaea and their extracellular polymeric compounds in the treatment of high salt wastewater containing phenol[J]. Chemosphere, 2022, 294: 133732. DOI: 10.1016/j.chemosphere.2022.133732. |
[16] | NG K K, SHI X Q, ONG S L, et al. An innovative of aerobic bio-entrapped salt marsh sediment membrane reactor for the treatment of high-saline pharmaceutical wastewater[J]. Chemical Engineering Journal, 2016, 295: 317-325. DOI: 10.1016/j.cej.2016.03.046. |
[17] | ADENIYI A, MBAYA R K K, ONYANGO M S, et al. Efficient suspension freeze desalination of mine wastewaters to separate clean water and salts[J]. Environmental Chemistry Letters, 2016, 14(4): 449-454. DOI: 10.1007/s10311-016-0562-6. |
[18] | SHUM E, PAPANGELAKIS V. Water recovery from inorganic solutions via natural freezing and melting[J]. Journal of Water Process Engineering, 2019, 31: 100787. DOI: 10.1016/j.jwpe.2019.100787. |
[19] | AN L Y, DAI Z, DI B, et al. Advances in cytochemistry: Mechanisms,reactions and applications[J]. Molecules, 2021, 26(3): 750. DOI: 10.3390/molecules26030750. |
[20] |
YODA T, MIYAKI H, SAITO T. Freeze concentrated apple juice maintains its flavor[J]. Scientific Reports, 2021, 11: 12679. DOI: 10.1038/s41598-021-92274-0.
pmid: 34135439 |
[21] | ALVI T, KHAN M K I, MAAN A A, et al. Modelling and kinetic study of novel and sustainable microwave-assisted dehydration of sugarcane juice[J]. Processes, 2019, 7(10): 712. DOI: 10.3390/pr7100712. |
[22] | PETZOLD G, ORELLANA P, MORENO J, et al. Vacuum-assisted block freeze concentration applied to wine[J]. Innovative Food Science & Emerging Technologies, 2016, 36: 330-335. DOI: 10.1016/j.ifset.2016.07.019. |
[23] | PRESTES A A, HELM C V, ESMERINO E A, et al. Freeze concentration techniques as alternative methods to thermal processing in dairy manufacturing: A review[J]. Journal of Food Science, 2022, 87(2): 488-502. DOI: 10.1111/1750-3841.16027. |
[24] | LIU Y, MING T Z, WU Y J, et al. Desalination of seawater by spray freezing in a natural draft tower[J]. Desalination, 2020, 496: 114700. DOI: 10.1016/j.desal.2020.114700. |
[25] | BADAWY S M. Laboratory freezing desalination of seawater[J]. Desalination and Water Treatment, 2016, 57(24): 11040-11047. DOI: 10.1080/19443994.2015.1041163. |
[26] | LIN W S, HUANG M B, GU A Z. A seawater freeze desalination prototype system utilizing LNG cold energy[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18691-18698. DOI: 10.1016/j.ijhydene.2017.04.176. |
[27] | LU Q F, JEONG B G, LAI S R, et al. Performance comparison of EGSB and IC reactors for treating high-salt fatty acid organic production wastewater[J]. Processes, 2022, 10(7): 1295. DOI: 10.3390/pr10071295. |
[28] |
XU C B, KOLLIOPOULOS G, PAPANGELAKIS V. Industrial water recovery via layer freeze concentration[J]. Separation and Purification Technology. 2022, 292: 121029.
doi: 10.1016/j.seppur.2022.121029 |
[29] | WANG Y Y, LI Y X, WU G X. SRT contributes significantly to sludge reduction in the OSA-based activated sludge process[J]. Environmental Technology, 2017, 38(3): 305-315. DOI: 10.1080/09593330.2016.1192223. |
[30] |
YUAN W, ZHANG L H, CHANG Y L, et al. Treatment of biofuel production wastewater by a combined freezing method for resources recovery and waste reduction[J]. Science of The Total Environment. 2021, 774: 145173.
doi: 10.1016/j.scitotenv.2021.145173 |
[31] | 金秋冬, 张维佳, 黄玉成, 等. 渐进冷冻法处理工业废水的研究[J]. 江苏化工, 2008, 36(5): 39-42. |
[32] | VUIST J E, BOOM R M, SCHUTYSER M A I. Progressive freeze concentration of whey protein-sucrose-salt mixtures[J]. Innovative Food Science & Emerging Technologies, 2021, 74: 102829. DOI: 10.1016/j.ifset.2021.102829. |
[33] | FENG W L, YIN Y, de LOURDES MENDOZA M, et al. Oil recovery from waste cutting fluid via the combination of suspension crystallization and freeze-thaw processes[J]. Journal of Cleaner Production, 2018, 172: 481-487. DOI: 10.1016/j.jclepro.2017.09.281. |
[34] | LE H Q, NGUYEN T X Q, CHEN S S, et al. Application of progressive freezing on forward osmosis draw solute recovery[J]. Environmental Science and Pollution Research, 2020, 27(28): 34664-34674. DOI: 10.1007/s11356-019-06079-w. |
[35] | CHEN D, ZHANG C S, RONG H W, et al. Experimental study on seawater desalination through supercooled water dynamic ice making[J]. Desalination, 2020, 476: 114233. DOI: 10.1016/j.desal.2019.114233. |
[36] | 张莹, 张超杰, 周琪. 冷冻法废水处理技术的研究与应用[J]. 水处理技术, 2013, 39(7): 6-10. DOI: 10.16796/j.cnki.1000-3770.2013.07.002. |
[37] | LIU T S, ZHANG Y, TANG Y Q, et al. Application of progressive freeze concentration in the removal of Ca2+ from wastewater[J]. Journal of Water Process Engineering, 2022, 46: 102619. DOI: 10.1016/j.jwpe.2022.102619. |
[38] | MOHARRAMZADEH S, ONG S K, ALLEMAN J, et al. Parametric study of the progressive freeze concentration for desalination[J]. Desalination, 2021, 510: 115077. DOI: 10.1016/j.desal.2021.115077. |
[39] | TERAOKA Y, SAITO A, OKAWA S. Ice crystal growth in supercooled solution[J]. International Journal of Refrigeration, 2002, 25(2): 218-225. DOI: 10.1016/s0140-7007(01)00082-2. |
[40] | MAZLI W A, SAMSURI S, AMRAN N A. Study of progressive freeze concentration and eutectic freeze crystallization technique for salt recovery[J]. IOP Conference Series: Materials Science and Engineering, 2020, 778(1): 012167. DOI: 10.1088/1757-899x/778/1/012167. |
[41] | 陈晓远, 闫莹, 范成李, 等. 悬浮结晶法预处理敌草胺生产废水[J]. 化工环保, 2019, 39(2): 163-167. DOI: 10.3969/j.issn.1006-1878.2019.02.009. |
[42] |
YIN Y, YANG Y, de LOURDES MENDOZA M, et al. Progressive freezing and suspension crystallization methods for tetrahydrofuran recovery from Grignard reagent wastewater[J]. Journal of cleaner production. 2017, 144: 180-186.
doi: 10.1016/j.jclepro.2017.01.012 |
[43] |
MOUNTADAR S, GUESSOUS M, RICH A, et al. Desalination of spent ion-exchange resin regeneration solutions by suspension freeze crystallization[J]. Desalination. 2019, 468: 114059.
doi: 10.1016/j.desal.2019.06.025 |
[44] | HU R, ZHANG C, ZHANG X L, et al. Research status of supercooled water ice making: a review[J]. Journal of Molecular Liquids, 2022, 347: 118334. DOI: 10.1016/j.molliq.2021.118334. |
[45] | HASAN M, LOUHI-KULTANEN M. Ice growth kinetics modeling of air-cooled layer crystallization from sodium sulfate solutions[J]. Chemical Engineering Science, 2015, 133: 44-53. DOI: 10.1016/j.ces.2015.01.050. |
[46] | YUAN W, LV W J, WANG H L, et al. Performance prediction of suspension freeze crystallization for the treatment of liquid hazardous wastes via machine learning methods[J]. Journal of Cleaner Production, 2021, 329: 129629. DOI: 10.1016/j.jclepro.2021.129629. |
[47] | ZIKALALA N, MAREE J P, ZVINOWANDA C, et al. Treatment of sulphate wastewater by freeze desalination[J]. Desalinationand Water Treatment, 2017, 79: 93-102. DOI: 10.5004/dwt.2017.20927. |
[48] |
KLOTZ S, KOMATSU K, PIETRUCCI F, et al. Ice VII from aqueous salt solutions: From a glass to a crystal with broken H-bonds[J]. Scientific Reports, 2016, 6: 32040. DOI: 10.1038/srep32040.
pmid: 27562476 |
[49] | YANG H, SUN Z Y, ZHAN Z L, et al. Effects of watering parameters in a combined seawater desalination process[J]. Desalination, 2018, 425: 77-85. DOI: 10.1016/j.desal.2017.10.014. |
[50] |
DARMALI C, MANSOURI S, YAZDANPANAH N, et al. Mechanisms and control of impurities in continuous crystallization: a review[J]. Industrial & Engineering Chemistry Research. 2018, 58(4): 1463-1479.
doi: 10.1021/acs.iecr.8b04560 |
[51] | ZHANG H T, JANAJREH I, HASSAN ALI M I, et al. Freezing desalination: heat and mass validated modeling and experimental parametric analyses[J]. Case Studies in Thermal Engineering, 2021, 26: 101189. DOI: 10.1016/j.csite.2021.101189. |
[52] | 付梦晓. 基于冷冻过程的复合脱盐实验研究[D]. 北京: 北京建筑大学, 2020. |
[53] |
YANG H, JIANG Y F, WANG R, et al. Effects of the soaking-related parameters in a combined freezing-based seawater desalination process[J]. Environmental Science and Pollution Research International, 2022, 29(34): 52162-52174. DOI: 10.1007/s11356-022-19601-4.
pmid: 35260980 |
[54] | 江苑菲. 高盐高有机物废水处理的冷冻复合方法研究[D]. 北京: 北京建筑大学, 2021. |
[55] | YANG H, FU M X, ZHAN Z L, et al. Study on combined freezing-based desalination processes with microwave treatment[J]. Desalination, 2020, 475: 114201. DOI: 10.1016/j.desal.2019.114201. |
[56] |
HOU Y, SUN X Y, DOU M J, et al. Cellulose nanocrystals facilitate needle-like ice crystal growth and modulate molecular targeted ice crystal nucleation[J]. Nano Letters, 2021, 21(11): 4868-4877. DOI: 10.1021/acs.nanolett.1c00514.
pmid: 33819045 |
[57] |
MOCHIZUKI K, QIU Y Q, MOLINERO V. Promotion of homogeneous ice nucleation by soluble molecules[J]. Journal of the American Chemical Society, 2017, 139(47): 17003-17006. DOI: 10.1021/jacs.7b09549.
pmid: 29111694 |
[58] | JIA L S, CUI W, CHEN Y, et al. Effect of ultrasonic power on super-cooling of TiO2 nanoparticle suspension[J]. International Journal of Heat and Mass Transfer, 2018, 120: 909-913. DOI: 10.1016/j.ijheatmasstransfer.2017.12.128. |
[59] | GAI S L, PENG Z B, MOGHTADERI B, et al. Ice nucleation of water droplet containing solid particles under weak ultrasonic vibration[J]. Ultrasonics Sonochemistry, 2021, 70: 105301. DOI: 10.1016/j.ultsonch.2020.105301. |
[60] | TIAN Y, ZHANG P Z, ZHU Z W, et al. Development of a single/dual-frequency orthogonal ultrasound-assisted rapid freezing technique and its effects on quality attributes of frozen potatoes[J]. Journal of Food Engineering, 2020, 286: 110112. DOI: 10.1016/j.jfoodeng.2020.110112. |
[61] | WANG Z, LI B G, LUO Q Q, et al. Research on energy saving of ultrasonic wave in the process of making sea-slurry ice[J]. Energy Conversion and Management, 2021, 247: 114541. DOI: 10.1016/j.enconman.2021.114541. |
[62] | GAO P H, CHENG B, ZHOU X Y, et al. Study on droplet freezing characteristic by ultrasonic[J]. Heat and Mass Transfer, 2017, 53(5): 1725-1734. DOI: 10.1007/s00231-016-1934-y. |
[63] |
GROSSIER R, LOUISNARD O, VARGAS Y. Mixture segregation by an inertial cavitation bubble[J]. Ultrasonics Sonochemistry, 2007, 14(4): 431-437. DOI: 10.1016/j.ultsonch.2006.10.010.
pmid: 17208505 |
[64] | SACLIER M, PECZALSKI R, ANDRIEU J. Effect of ultrasonically induced nucleation on ice crystals' size and shape during freezing in vials[J]. Chemical Engineering Science, 2010, 65(10): 3064-3071. DOI: 10.1016/j.ces.2010.01.035. |
[65] | XIE C G, ZHANG L P, LIU Y H, et al. A direct contact type ice generator for seawater freezing desalination using LNG cold energy[J]. Desalination, 2018, 435: 293-300. DOI: 10.1016/j.desal.2017.04.002. |
[66] | 陈晓远. 冷冻浓缩法废水处理及营养盐回收技术研究[D]. 上海: 华东理工大学, 2018. |
[1] | JIA Quan, HU Li-min, REN Feng, ZHANG Jian-li, TIAN Hong-nian, LIU Shu-bin. Optimization of the freeze concentration process of ceftazidime mother liquor based on the response surface method [J]. Shandong Science, 2021, 34(5): 121-129. |
|