Shandong Science ›› 2019, Vol. 32 ›› Issue (5): 46-53.doi: 10.3976/j.issn.1002-4026.2019.05.005
Previous Articles Next Articles
LIU Ke-chun, GAO Yan, ZHANG Yun, HE Qiu-xia, HAN Li-wen, LI Ning, JI Xiu-na, SUN Chen*
Received:
2019-06-26
Online:
2019-10-20
Published:
2019-10-08
CLC Number:
LIU Ke-chun, GAO Yan, ZHANG Yun, HE Qiu-xia, HAN Li-wen, LI Ning, JI Xiu-na, SUN Chen. Zebrafish as a model organism for hearing research[J].Shandong Science, 2019, 32(5): 46-53.
1 | 杨君, 张镜心, 郑晓婉, 等. 中国人最常见的耳聋基因GJB2,12SrRNA,SLC26A4和对新生儿耳聋基因筛查的需求[J/OL]. 临床检验杂志(电子版), 2012,1(1):8-9. [2019-06-20]. http://www.cnki.com.cn/Article/CJFDTotal-LNJI201201006.htm. |
2 |
RASOOLY R S, HENKEN D, FREEMAN N, et al. Genetic and genomic tools for zebrafish research: The NIH zebrafish initiative[J]. Developmental Dynamics, 2003, 228(3):490-496.
doi: 10.1002/dvdy.10366 |
3 | 程磊. 斑马鱼胚胎图像的形态学特征分析[D]. 南京:南京理工大学, 2009. |
4 |
KERSTIN H, MATTHEW D C, CARLOS F T, et al. The zebrafish reference genome sequence and its relationship to the human genome[J]. Nature, 2013, 496(7446):498-503.
doi: 10.1038/nature12111 |
5 |
NICOLSON T. The genetics of hearing and balance in zebrafish[J]. Annual Review of Genetics, 2005, 39(1):9-22.
doi: 10.1146/annurev.genet.39.073003 |
6 |
BEVER M M, FEKETE D M. Atlas of the developing inner ear in zebrafish[J]. Developmental dynamics, 2002, 223(4):536-543.
doi: 10.1002/dvdy.10062 |
7 |
SANTI P A, JOHNSON S B, HILLENBRAND M, et al. Thin-sheet laser imaging microscopy for optical sectioning of thick tissues[J]. Biotechniques, 2009, 46(4):287-294.
doi: 10.2144/000113087 |
8 | PERRY S F, EKKER M, FARRELL A P, et al. Fish physiology zebrafish[M]. Pittsburgh:Academic Press,2010. |
9 |
PLATT C. Zebrafish inner ear sensory surfaces are similar to those in goldfish[J]. Hearing Research, 1993, 65(1/2):133-140.
doi: 10.1016/0378-5955(93)90208-I |
10 |
ENGELMANN J, HANKE W, MOGDANS J, et al. Hydrodynamic stimuli and the fish lateral line[J]. Nature, 2000, 408(6808):51-52.
doi: 10.1038/35040706 |
11 |
GHYSEN A, DAMBLY-CHAUDIERE C. Development of the zebrafish lateral line[J]. Current Opinion in Neurobiology, 2004, 14(1):67-73.
doi: 10.1016/j.conb.2004.01.012 |
12 |
NAYAK G D, RATNAYAKA H S, GOODYEAR R J, et al. Development of the hair bundle and mechanotransduction[J]. International Journal of Developmental Biology, 2007, 51(6/7):597.
doi: 10.1387/ijdb.072392gn |
13 |
TON C, PARNG C. The use of zebrafish for assessing ototoxic and otoprotective agents[J]. Hearing Research, 2005, 208(1/2):79-88.
doi: 10.1016/j.heares.2005.05.005 |
14 |
赵壮, 佟军威, 张靖溥, 等. 氨基糖苷类药物耳毒性的斑马鱼模型的研究[J]. 药学学报, 2011,46(8):928-935.
doi: 10.16438/j.0513-4870.2011.08.009 |
15 |
YOO M H, RAH Y C, CHOI J, et al. Embryotoxicity and hair cell toxicity of silver nanoparticles in zebrafish embryos[J]. International Journal of Pediatric Otorhinolaryngology, 2016, 83:168-174.
doi: 10.1016/j.ijporl.2016.02.013 |
16 |
YOO M H, RAH Y C, PARK S, et al. Impact of nicotine exposure on hair cell toxicity and embryotoxicity during zebrafish development[J]. Clinical and Experimental Otorhinolaryngology, 2018, 11(2):109-117.
doi: 10.21053/ceo.2017.00857 |
17 |
OU H C, CUNNINGHAM L L, FRANCIS S P, et al. Identification of FDA-approved drugs and bioactives that protect hair cells in the zebrafish (Danio rerio) lateral line and mouse (Mus musculus) utricle[J]. Journal of the Association for Research in Otolaryngology, 2009, 10(2):191-203.
doi: 10.1007/s10162-009-0158-y |
18 |
VLASITS A L, SIMON J A, RAIBLE D W, et al. Screen of FDA-approved drug library reveals compounds that protect hair cells from aminoglycosides and cisplatin[J]. Hearing Research, 2012, 294(1/2):153-165.
doi: 10.1016/j.heares.2012.08.002 |
19 |
SONG J J, CHANG J, CHOI J, et al. Protective role of NecroX-5 against neomycin-induced hair cell damage in zebrafish[J]. Archives of Toxicology, 2014, 88(2):435-441.
doi: 10.1007/s00204-013-1124-3 |
20 |
WU C Y, LEE H J, LIU C F, et al. Protective role of L-ascorbic acid, N-acetylcysteine and apocynin on neomycin-induced hair cell loss in Zebrafish[J]. Journal of Applied Toxicology, 2015, 35(3):273-279.
doi: 10.1002/jat.3043 |
21 |
OH K H, RAH Y C, HWANG K H, et al. Melatonin mitigates neomycin-induced hair cell injury in zebrafish[J]. Drug and Chemical Toxicology, 2016, 40(4):1-7.
doi: 10.1080/01480545.2016.1244679 |
22 |
HIROSE Y, SUGAHARA K, KANAGAWA E, et al. Quercetin protects against hair cell loss in the zebrafish lateral line and guinea pig cochlea[J]. Hearing Research, 2016, 342:80-85.
doi: 10.1016/j.heares.2016.10.001 |
23 |
ESTERBERG R, LINBO T, PICKETT S B, et al. Mitochondrial calcium uptake underlies ROS generation during aminoglycoside-induced hair cell death[J]. The Journal of Clinical Investigation, 2016, 126(9):3556-3566.
doi: 10.1172/JCI84939 |
24 |
吴艾欣, 李娟, 陈钢, 等. 丹参提取物及丹酚酸B对庆大霉素耳毒性保护作用的体内外研究[J]. 广东药科大学学报, 2019, 35(1):76-81.
doi: 10.16809/j.cnki.2096-3653.2018120403 |
25 |
HARRIS J A, CHENG A G, CUNNINGHAM L L, et al. Neomycin-induced hair cell death and rapid regeneration in the lateral of zebrafish(Danio rerio)[J].Journal of the Association for Research in Otolaryngology, 2003, 4(2):219-234.
doi: 10.1007/s10162-002-3022-x |
26 |
HERNANDEZ P P, OLIVARI F A, SARRAZIN A F, et al. Regeneration in zebrafish lateral line neuromasts: Expression of the neural progenitor cell marker sox2 and proliferation-dependent and-independent mechanisms of hair cell renewal[J]. Developmental Neurobiology, 2007, 67(5):637-654.
doi: 10.1002/dneu.20386 |
27 |
MILLIMAKI B B, SWEET E M, DHASON M S, et al. Zebrafish atoh1 genes: classic proneural activity in the inner ear and regulation by Fgf and Notch[J]. Development, 2007, 134(2):295-305.
doi: 10.1242/dev.02734 |
28 |
MA E Y, RUBEL E W, RAIBLE D W. Notch signaling regulates the extent of hair cell regeneration in the zebrafish lateral line[J]. Journal of Neuroscience, 2008, 28(9):2261-2273.
doi: 10.1523/JNEUROSCI.4372-07.2008 |
29 |
MILLIMAKI B B, SWEET E M, RILEY B B. Sox2 is required for maintenance and regeneration, but not initial development, of hair cells in the zebrafish inner ear[J]. Developmental Biology, 2010, 338(2):262-269.
doi: 10.1016/j.ydbio.2009.12.011 |
30 |
SCHUCK J B, SUN H, PENBERTHY W T, et al. Transcriptomic analysis of the zebrafish inner ear points to growth hormone mediated regeneration following acoustic trauma[J]. BMC Neuroscience, 2011, 12(1):88.
doi: 10.1186/1471-2202-12-88 |
31 |
MACKENZIE S M, RAIBLE D W. Proliferative regeneration of zebrafish lateral line hair cells after different ototoxic insults[J]. PLoS ONE, 2012, 7(10):e47257.
doi: 10.1371/journal.pone.0047257 |
32 | 周婷婷, 范纯新, 邹莎, 等. Eya1-Six1信号在斑马鱼侧线神经丘毛细胞再生过程中的表达[J]. 上海海洋大学学报, 2013, 22(6):801-806. |
33 | JIANG L, ROMERO-CARVAJAL A, HAUG J S, et al. Gene- analysis of hair cell regeneration in the zebrafish lateral line[J]. Proceedings of the National Academy of Sciences, 2014, 111(14): E1383-E1392. DOI: 10.1073/pnas.1402898111 |
34 |
LEE S G, HUANG M, OBHOLZER N D, et al. Myc and Fgf are required for zebrafish neuromast hair cell regeneration[J]. PloS one, 2016, 11(6):e0157768.
doi: 10.1371/journal.pone.0157768 |
35 |
TANG D, HE Y, LI W, et al. Wnt/β-catenin interacts with the FGF pathway to promote proliferation and regenerative cell proliferation in the zebrafish lateral line neuromast[J]. Experimentai & Molecular Medicine, 2019, 51(5):58.
doi: 10.1038/s12276-019-0247-x |
36 |
CHIU L L, CUNNINGHAM L L, RAIBLEe D W, et al. Using the zebrafish lateral line to screen for ototoxicity[J]. Journal of the Association for Research in Otolaryngology, 2008, 9(2):178-190.
doi: 10.1007/s10162-008-0118-y |
37 |
TANIMOTO M, OTA Y, HORIKAWA K, et al. Auditory input to CNS is acquired coincidentally with development of inner ear after formation of functional afferent pathway in zebrafish.[J]. Neuroscience Research, 2009, 65(9):S69-S69.
doi: 10.1523/JNEUROSCI.5530-08.2009 |
38 |
GLEASON M R, NAGIEL A, JAMET S, et al. The transmembrane inner ear (Tmie) protein is essential for normal hearing and balance in the zebrafish[J]. Proceedings of the National Academy of Sciences, 2009, 106(50):21347-21352.
doi: 10.1073/pnas.0911632106 |
39 |
THOMAS A J, HAILEY D W, STAWICKI T M, et al. Functional mechanotransduction is required for cisplatin-induced hair cell death in the zebrafish lateral line[J]. Journal of Neuroscience, 2013, 33(10):4405-4414.
doi: 10.1523/JNEUROSCI.3940-12.2013 |
40 |
MAEDA R, PACENTINE I V, ERICKSON T, et al. Functional analysis of the transmembrane and cytoplasmic domains of Pcdh15a in zebrafish hair cells[J]. The Journal of Neuroscience, 2017, 37(12):3231-3245.
doi: 10.1523/JNEUROSCI.2216-16.2017 |
41 |
ZEDDIES D G, FAY R R. Development of the acoustically evoked behavioral response in zebrafish to pure tones[J]. The Journal of Experimental Biology, 2005, 208(7):1363-1372.
doi: 10.1242/jeb.01534 |
42 |
SULI A, WATSON G M, RUBEL E W, et al. Rheotaxis in larval zebrafish is mediated by lateral line mechanosensory hair cells[J]. PloS One, 2012, 7(2):e29727-e29732.
doi: 10.1371/journal.pone.0029727 |
43 |
CERVI A L, POLING K R, HIGGS D M. Behavioral measure of frequency detection and discrimination in the zebrafish, Danio rerio[J].Zebrafish, 2012, 9(1):1-7.
doi: 10.1089/zeb.2011.0720 |
44 |
NIIHORI M, PLATTO T, LGARASHI S, et al. Zebrafish swimming behavior as a biomarker for ototoxicity-induced hair cell damage: A high-throughput drug development platform targeting hearing loss[J]. Translational Research, 2015, 166(5):440-450.
doi: 10.1016/j.trsl.2015.05.002 |
45 |
YANG Q, SUN P, CHEN S, et al. Behavioral methods for the functional assessment of hair cells in zebrafish[J]. Frontiers of Medicine, 2017, 11(2):178-190.
doi: 10.1007/s11684-017-0507-x |
46 |
LIU X, LIN J, ZHANG Y, et al. Sound shock response in larval zebrafish: A convenient and high-throughput assessment of auditory function[J]. Neurotoxicology and Teratology, 2018, 66:1-7.
doi: 10.1016/j.ntt.2018.01.003 |
47 |
MAEDA R, PACENTINE I V, ERICKSON T, et al. Functional analysis of the transmembrane and cytoplasmic domains of Pcdh15a in zebrafish hair cells[J]. The Journal of Neuroscience, 2017, 37(12):3231-3245.
doi: 10.1523/JNEUROSCI.2216-16.2017 |
48 |
SCHWARZER S, SPIEB S, BRAND M, et al. Dlx3b/4b is required for early-born but not later-forming sensory hair cells during zebrafish inner ear development[J]. Biology Open, 2017, 6(9):1270-1278.
doi: 10.1242/bio.026211 |
49 |
PEI W, XU L, HUANG S C, et al. Guided genetic screen to identify genes essential in the regeneration of hair cells and other tissues[J]. Npj Regenerative Medicine, 2018, 3(1):11-20.
doi: 10.1038/s41536-018-0050-7 |
50 |
ZHANG Q, ZHANG L, CHEN D, et al. Deletion of Mtu1 (Trmu) in zebrafish revealed the essential role of tRNA modification in mitochondrial biogenesis and hearing function[J]. Nucleic Acids Research, 2018, 46(20):10930-10945.
doi: 10.1093/nar/gky758 |
51 | 冯晓, 齐麟, 孟娟. 斑马鱼耳聋基因Gfi与POU4f3的关联性[J]. 河南大学学报(医学版), 2014, 33(4):267-269. |
52 |
LI X, SONG G, ZHAO Y, et al. Claudin7b is required for the formation and function of inner ear in zebrafish[J]. Journal of Cellular Physiology, 2017, 233(4):3195-3206.
doi: 10.1002/jcp.26162 |
53 |
MATERN M S, BEIRL A, OGAWA Y, et al. Transcriptomic profiling of zebrafish hair cells using ribo tag[J]. Frontiers in Cell and Developmental Biology, 2018, 6:47-60.
doi: 10.3389/fcell.2018.00047 |
54 |
ITALLIA V P, TERESA N. Putative pore-forming subunits of the mechano-electrical transduction channel, Tmcl/2b, require Tmie to localize to the site of mechanotransduction in zebrafish sensory hair cells[J]. PloS Genetics, 2018, 15(2):e1007635.
doi: 10.1101/393330 |
[1] | FAN Wei, SHEN Chuanlin, ZHANG Xuanming, DU Xingshuo, ZHAN Wen, SUN Chen, JIN Meng, LI Xiaobin, ZHANG Sichen, SUN Botong, HE Qiuxia. Prediction of anti-aging mechanism of Panax quinquefolius L. by network pharmacology and molecular docking [J]. Shandong Science, 2024, 37(6): 42-50. |
[2] | CHEN Shanjun, WANG Huan, HU Kaiqing, BI Wenjie, CHENG Guidong, WANG Songsong, HAN Liwen, WANG Xiaojing. Screening of potential antiepileptic active ingredients in Rhizoma Gastrodiae based on zebrafish model and metabolomics technology [J]. Shandong Science, 2024, 37(3): 1-9. |
[3] | MA Shijing, HE Chunyan, GUAN Tianzhu, YAO Xueshuang, ZHANG Junpeng. Exploration of antihyperlipidemia mechanism of Monopterus albus peptides based on hyperlipidemic zebrafish model and network pharmacology [J]. Shandong Science, 2024, 37(3): 27-38. |
[4] | LIU Kechun, WANG Yongcheng, ZANG Xiaohan, XIA Qing, ZHANG Yun, ZHANG Shanshan, SUN Chen. Advancements in network pharmacology and zebrafish modeling for studying traditional Chinese medicine’s effective substances and mechanisms of action [J]. Shandong Science, 2024, 37(2): 29-35. |
[5] | XIA Qing, ZANG Xiaohan, WANG Yongcheng, ZHANG Yun, LI Peihai, ZHANG Xuanming, LIU Kechun. Progress and development trends in the use of zebrafish as a model organism for evaluating cosmetic efficacy [J]. Shandong Science, 2024, 37(2): 36-46. |
[6] | WU Yonghao, XIE Hebing, HOU Hairong, WANG Rongchun, CHEN Xiqiang. Protective effect of Feirepuqing Powder on hypoxia-induced sports injury in zebrafish model by inhibiting Hif1α [J]. Shandong Science, 2024, 37(1): 32-38. |
[7] | SHI Ruidie, GAO Xin, WANG Baokun, GAO Daili, JIN Meng, ZHANG Xiujun. Anti-Alzheimer's disease activity of oroxin A and its mechanism of action based on zebrafish model [J]. Shandong Science, 2023, 36(6): 28-37. |
[8] | XU Lei, ZHAO Rusong, JING Chuanyong, WANG Xia. Review on the analytical technique for antimony speciation in environmental media [J]. Shandong Science, 2023, 36(4): 122-133. |
[9] | DENG Zhi-peng, ZHANG Xiao, TIAN Hai-tao. Identification of metabolites of isochlorogenic acid A in rats based on UHPLC-Q-Exactive Orbitrap MS [J]. Shandong Science, 2022, 35(6): 58-64. |
[10] | ZOU Hong-yuan, ZHU Cheng-yue, ZHANG Shan-shan, KONG Rui-qi, ZHANG Yun, LIU Ke-chun. Protective effect of peony seed oil microcapsule powder on isoniazid-induced developmental toxicity in zebrafish [J]. Shandong Science, 2021, 34(4): 45-51. |
[11] | MO Cai-lian, LI Jie, WANG Jia-zhen, LIU Xin , LIN Sheng-hua, MOU Yan-ling, ZHANG Yun, LIU Ke-chun, HE Qiu-xia. Applicability of a zebrafish thrombosis model in screening active ingredients of traditional Chinese medicine [J]. Shandong Science, 2021, 34(4): 52-59. |
[12] | ZHAO Yan-fang, ZHAI Zhen-guo, CHEN Xiang-feng. Determination of five heavy metals in the soil of a vegetable intensive area by wavelength dispersive X-ray fluorescence spectrometric [J]. Shandong Science, 2019, 32(5): 131-135. |
[13] | LIU Long, JIANG Ting, HOU Nan, ZHANG Zong-yang, DING Ning. The reconstruction method for fracture surface morphology of metal parts based on 3D technologies [J]. Shandong Science, 2019, 32(3): 42-47. |
[14] | WANG Rong-chun,HE Qiu-xia,HAN Jian,CHEN Xi-qiang,SUN Chen,WANG Xi-min,HAN Li-wen,LIU Ke-chun. Research on the effects of chloramphenicol on developmental and immune toxicity of juvenile zebrafish [J]. SHANDONG SCIENCE, 2017, 30(6): 35-40. |
[15] | LIU Fa-sheng, WANG Rong-chun, GUO Jing-lan, CHEN Yan-li, XIA Qing, KONG Hao-tian, FENG Run-liang, HAN Li-wen, ZHANG Ai-ping, LIU Ke-chun. The immune-regulatory effects of active ingredients of asparagus using zebrafish model [J]. SHANDONG SCIENCE, 2017, 30(6): 29-34. |
|