|
[1]陈琛,耿剑亮,匡海学,等. UHPLC-Oribtrap/HRMS技术分析干姜中非挥发性化学成分在炮制前后的变化[J].南京中医药大学学报, 2020, 36(3): 387-395.
DOI: 10.14148/j.issn.1672-0482.2020.0387.
[2] 高伟城,王小平,沈晓华,等.不同干姜炮制品姜酚类成分含量的研究[J].中医临床研究, 2020,
12(34): 22-25. doi:10.3969/j.issn.1674-7860.2020.34.007
[3]方文韬,詹志来,彭华胜,等.干姜、生姜、炮姜分化的历史沿革与变迁[J].中国中药杂志, 2017, 42(9): 1641-1645. DOI:
10.19540/j.cnki.cjcmm.2017.0065.
[4] 杨秀娟,王佳佳,郭晶晶,等.生姜、干姜、炮姜的性效考证及其化学成分、药理活性的研究进展[J].中药新药与临床药理,
2024, 35(4): 595-605.DOI: 10.19378/j.issn.1003-9783.2024.04.018
[5]张科卫,马彩霞,缪六舒.干姜、炮姜中成分的比较[J].中成药, 2014,
36(6): 1254-1260. DOI: 10.3969/j.issn.1001-1528.2014.06.031.
[6] LI X, LIU Z Q, LIAO J, et al. Network pharmacology approaches
for research of traditional Chinese medicines[J]. ChineseJournalofNatural
Medicines, 2023, 21(5): 323-332. DOI: 10.1016/S1875-5364(23)60429-7.
[7] WANG C X, CHEN H, SONG S F, et al. Discovery of
metabolic markers for the discrimination ofHelwingiaspecies based on bioactivity evaluation, plant metabolomics, and network
pharmacology[J]. Rapid Communications in Mass Spectrometry, 2022, 36(24):
e9411. DOI: 10.1002/rcm.9411.
[8] LIU A M, ZHONG M X, HAN Z L, et al. Characterization
of active compounds in Sanhuang shu’ai decoction for the management of
ulcerative colitis: A UHPLC-MS study[J]. Rapid Communications in Mass
Spectrometry, 2025, 39(6): e9976. DOI: 10.1002/rcm.9976.
[9]游海心,杨晓艳,罗奕宇,等.基于量效关系从“中药-成分-靶点”探讨大黄、枳实和厚朴不同配比的疗效作用机制[J].中草药, 2024, 55(20): 7021-7032.
[10] LIU S, DONG H J, ZHANG M M, et al. Identification
of different degrees of processed ginger using GC-IMS combined with machine
learning[J]. Journal of Pharmaceutical Analysis, 2024, 14(1): 149-151. DOI:
10.1016/j.jpha.2023.10.005.
[11] 薛贵仁.基于代谢组学技术的干姜炮制前后特征成分差异性研究[D].石家庄:河北医科大学,
2022.
[12] ABDELHAFEZ O H, OTHMAN E M, FAHIM J R, et al.
Metabolomics analysis and biological investigation of three Malvaceae
plants[J]. Phytochemical Analysis, 2020, 31(2): 204-214. DOI: 10.1002/pca.2883.
[13] 费增焱,栗延伟,谭军,等.腺苷预处理对脑缺血再灌注大鼠小胶质细胞极化及神经损伤的影响[J].新乡医学院学报, 2024,
40(6): 501-507.DOI:10.7683/xxyxyxb.2024.06.001.
[14]营大礼.干姜化学成分及药理作用研究进展[J].中国药房, 2008,
19(18): 1435-1436.
[15] IWAMI M, SHIINA T, HIRAYAMA H, et al.
Intraluminal administration of zingerol, a non-pungent analogue of zingerone,
inhibits colonic motility in rats[J]. BiomedicalResearch, 2011, 32(2): 181-185.
DOI: 10.2220/biomedres.32.181.
[16] SUK S, KWON G T, LEE E, et al. Gingerenone A,
a polyphenol present in ginger, suppresses obesity and adipose tissue
inflammation in high-fat diet-fed mice[J]. Molecular Nutrition & Food
Research, 2017, 61(10): 10.1002/mnfr.201700139. DOI: 10.1002/mnfr.201700139.
[17] KO H, KIM B S, LEE Y E, et al.
Anti-inflammatory effects of Gingerenone A through modulation of toll-like
receptor signaling pathways[J]. European Journal of Pharmacology, 2024, 983:
176997. DOI: 10.1016/j.ejphar.2024.176997.
[18] 陈乔,张鹏,韩诗祺,等.基于液质联用技术结合网络药理学探讨金莲花乙酸乙酯部位抗炎作用机制[J].世界科学技术-中医药现代化, 2025, 27(2): 404-419.DOI:
10.11842/wst.20241115005 CSTR: 32150.14.wst.20241115005
[19] KRISTENSEN N N, OLSEN J, GAD M, et al.
Genome-wide expression profiling during protection from colitis by regulatory T
cells[J]. Inflammatory Bowel Diseases, 2008, 14(1): 75-87. DOI:
10.1002/ibd.20277.
[20] WANG Y J, LIU Y S, ZHANG M, et al. Inhibition
of PTGS1 promotes osteogenic differentiation of adipose-derived stem cells by
suppressing NF-kB signaling[J]. Stem Cell Research & Therapy, 2019, 10(1):
57. DOI: 10.1186/s13287-019-1167-3.
[21] WU Y W, WANG Y P, WANG J, et al. TLR4 mediates
upregulation and sensitization of TRPV1 in primary afferent neurons in 2, 4,
6-trinitrobenzene sulfate-induced colitis[J]. Molecular Pain, 2019, 15:
1744806919830018. DOI: 10.1177/1744806919830018.
[22] LIU Q Y, LU Z Y, REN H, et al. Cav3.2 T-Type
calcium channels downregulation attenuates bone cancer pain induced by
inhibiting IGF-1/HIF-1α signaling pathway in the rat spinal cord[J]. Journal of
Bone Oncology, 2023, 42: 100495. DOI: 10.1016/j.jbo.2023.100495.
[23] LI Y, YU C, ZHU W M, et al. Triptolide
ameliorates IL-10-deficient mice colitis by mechanisms involving suppression of
IL-6/STAT3 signaling pathway and down-regulation of IL-17[J]. Molecular
Immunology, 2010, 47(15): 2467-2474. DOI: 10.1016/j.molimm.2010.06.007.
[24] 张倩,王海东,杨会军,等.基于Toll样受体4信号通路探讨骨质疏松症的作用机制及干预策略[J/OL].协和医学杂志,1-11[2025-01-16].http://kns.cnki.net/kcms/detail/11.5882.R.20241202.1453.002.html.
[25] CHEN G Q, GOEDDEL D V. TNF-R1 signaling: A
beautiful pathway[J]. Science, 2002, 296(5573): 1634-1635. DOI:
10.1126/science.1071924.
[26] IEMI L, BUSCH N A. Moment-to-moment fluctuations in
neuronal excitability bias subjective perception rather than strategic
decision-making[J]. eNeuro, 2018, 5(3): ENEURO.0430-17.2018. DOI:
10.1523/ENEURO.0430-17.2018.
[27] 王列,马铁明,于嘉祥,等.基于BDNF/Trkb/p38/JNK信号通路研究电针抑制筋膜疼痛综合征模型大鼠肌肉细胞凋亡的机制[J/OL].中华中医药学刊,1-15[2025-04-15].http://kns.cnki.net/kcms/detail/21.1546.R.20241121.1601.142.html.
|