[1] |
钱南南, 杨文明, 魏涛华, 等. 肝豆状核变性伏毒阻络病因病机探要[J]. 中国实验方剂学杂志, 2022, 28(12): 133-140. DOI: 10.13422/j.cnki.syfjx.20221291.
|
[2] |
CZŁONKOWSKA A, LITWIN T, DUSEK P, et al. Wilson disease[J]. Nature Reviews Disease Primers, 2018, 4(1): 21. DOI: 10.1038/s41572-018-0018-3.
pmid: 30190489
|
[3] |
XUE Q, YAN D, CHEN X, et al. Copper-dependent autophagic degradation of GPX4 drives ferroptosis[J]. Autophagy, 2023, 19(7): 1982-1996. DOI: 10.1080/15548627.2023.2165323.
|
[4] |
QIU Y M, CAO Y, CAO W J, et al. The application of ferroptosis in diseases[J]. Pharmacological Research, 2020, 159: 104919. DOI: 10.1016/j.phrs.2020.104919.
|
[5] |
RYAN S K, ZELIC M, HAN Y N, et al. Microglia ferroptosis is regulated by SEC24B and contributes to neurodegeneration[J]. Nature Neuroscience, 2023, 26(1): 12-26. DOI: 10.1038/s41593-022-01221-3.
|
[6] |
LEE H B, YU M R, SONG J S, et al. Reactive oxygen species amplify protein kinase C signaling in high glucose-induced fibronectin expression by human peritoneal mesothelialcells[J]. Kidney International, 2004, 65(4): 1170-1179. DOI: 10.1111/j.1523-1755.2004.00491.x.
|
[7] |
ZHANG H L, HU B X, LI Z L, et al. PKCβII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis[J]. Nature Cell Biology, 2022, 24(1): 88-98. DOI: 10.1038/s41556-021-00818-3.
|
[8] |
SUN X, ZHANG X Y, YAN H, et al. Protective effect of curcumin on hepatolenticular degeneration through copper excretion and inhibition of ferroptosis[J]. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 2023, 113: 154539. DOI: 10.1016/j.phymed.2022.154539.
|
[9] |
BOUCHAOUI H, MAHONEY-SANCHEZ L, GARÇON G, et al. ACSL4 and the lipoxygenases 15/15B are pivotal for ferroptosis induced by iron and PUFA dyshomeostasis in dopaminergic neurons[J]. Free Radical Biology & Medicine, 2023, 195: 145-157. DOI: 10.1016/j.freeradbiomed.2022.12.086.
|
[10] |
WEISS K H, ASKARI F K, CZLONKOWSKA A, et al. Bis-choline tetrathiomolybdatein patients with Wilson’s disease: an open-label, multicentre, phase 2 study[J]. The Lancet Gastroenterology &Hepatology, 2017, 2(12): 869-876. DOI: 10.1016/S2468-1253(17)30293-5.
|
[11] |
张玉婷, 李立华, 陈浩. 新安特色制剂肝豆灵片治疗肝豆状核变性的研究进展[J]. 中国实验方剂学杂志, 2022, 28(23): 97-102. DOI: 10.13422/j.cnki.syfjx.20222396.
|
[12] |
王艳昕, 鲍远程, 孙敏, 等. 肝豆灵干预铜负荷大鼠认知障碍及海马细胞凋亡的研究[J]. 中国临床药理学杂志, 2015, 31(23): 2333-2336. DOI: 10.13699/j.cnki.1001-6821.2015.23.018.
|
[13] |
姜琨彦, 王建钰, 王涛, 等. 低剂量铜暴露对HT22神经细胞氧化应激和凋亡的诱导作用[J]. 空军军医大学学报, 2022, 43(7): 679-684. DOI: 10.13276/j.issn.2097-1656.2022.06.004.
|
[14] |
江张胜, 董婷, 唐露露, 等. 槲皮素对CuCl2诱导的小鼠BV2小胶质细胞神经炎症的保护机制研究[J]. 现代中药研究与实践, 2022, 36(6): 29-33. DOI: 10.13728/j.1673-6427.2022.06.006.
|
[15] |
JIANG Z S, DONG T, WANG Y, et al. Gandouling alleviates cognitive dysfunction by regulates the p62/Nrf2 signaling pathway to reduce oxidative stress and autophagy in mice models of Wilson’s disease[J]. Arabian Journal of Chemistry, 2023, 16(2): 104477. DOI: 10.1016/j.arabjc.2022.104477.
|
[16] |
闻雨雅, 董婷, 江张胜, 等. 肝豆灵片通过调节TLR4/NF-KB/NLRP3信号通路减轻肝豆状核变性神经炎症的机制[J]. 山东科学, 2023, 36(4): 42-51. DOI: 10.3976/j.issn.1002-4026.2023.04.006.
|
[17] |
黄庆洋, 纪东东, 田绣云, 等. 小檗碱通过激活Nrf2-HO-1/GPX4通路抑制小鼠海马神经元HT22细胞的铁死亡[J]. 南方医科大学学报, 2022, 42(6): 937-943. DOI: 10.12122/j.issn.1673-4254.2022.06.19.
|
[18] |
孔金融, 施高翔, 侯静, 等. 基于Nrf2/HO-1通路抑制铁死亡探究甘草含药血清对LPS诱导的Caco2细胞炎症的影响[J]. 中国实验方剂学杂志, 2023, 29(16): 144-153. DOI: 10.13422/j.cnki.syfjx.20230601.
|