Shandong Science ›› 2024, Vol. 37 ›› Issue (1): 69-79.doi: 10.3976/j.issn.1002-4026.20230074
• New Materials • Previous Articles Next Articles
GUO Jingze1(
), TAN Shuangmei1, LI Yutong1, LIU Zhihua1, LI Song1, XIN Zhenxiang1, ZHAO Shuai1,2, LI Lin1,*(
)
Received:2023-04-26
Published:2024-02-20
Online:2024-01-26
Contact:
LI Lin
E-mail:g921474559@163.com;qustlilin@163.com
CLC Number:
GUO Jingze, TAN Shuangmei, LI Yutong, LIU Zhihua, LI Song, XIN Zhenxiang, ZHAO Shuai, LI Lin. Effect of graphene-modified silica filler on the properties of natural rubber[J].Shandong Science, 2024, 37(1): 69-79.
Table 1
"
| 试样 | 配方 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| NR | 白炭黑 | KH570 | TGE | 硬脂酸 | ZnO | 防老剂4010NA | 硫磺 | DM | CZ | ||
| nano-SiO2/NR | 100 | 20 | 0 | 0.0 | 3.0 | 5.0 | 3.0 | 2.8 | 0.1 | 1.4 | |
| KS-TGE/NR-0-1 | 100 | 20 | 0 | 1.0 | 3.0 | 5.0 | 3.0 | 2.8 | 0.1 | 1.4 | |
| KS-TGE/NR-1-1 | 100 | 20 | 1 | 1.0 | 3.0 | 5.0 | 3.0 | 2.8 | 0.1 | 1.4 | |
| KS-TGE/NR-2-1 | 100 | 20 | 2 | 1.0 | 3.0 | 5.0 | 3.0 | 2.8 | 0.1 | 1.4 | |
| KS-TGE/NR-3-1 | 100 | 20 | 3 | 1.0 | 3.0 | 5.0 | 3.0 | 2.8 | 0.1 | 1.4 | |
| KS-TGE/NR-0-0.4 | 100 | 20 | 0 | 0.4 | 3.0 | 5.0 | 3.0 | 2.8 | 0.1 | 1.4 | |
| KS-TGE/NR-1-0.4 | 100 | 20 | 1 | 0.4 | 3.0 | 5.0 | 3.0 | 2.8 | 0.1 | 1.4 | |
| KS-TGE/NR-2-0.4 | 100 | 20 | 2 | 0.4 | 3.0 | 5.0 | 3.0 | 2.8 | 0.1 | 1.4 | |
| KS-TGE/NR-3-0.4 | 100 | 20 | 3 | 0.4 | 3.0 | 5.0 | 3.0 | 2.8 | 0.1 | 1.4 | |
Table 2
Physical properties of KS-TGE/NR composites"
| 试样 | 拉伸强度/ MPa | 100%定伸 应力/MPa | 300%定伸 应力/MPa | 500%定伸 应力/MPa | 断裂伸长 率/% | 力最大 值/N | 回弹/% |
|---|---|---|---|---|---|---|---|
| KS-TGE/NR-0-1 | 21.20 | 1.40 | 4.70 | 15.30 | 585.78 | 209.20 | 79.70 |
| KS-TGE/NR-1-1 | 22.40 | 1.50 | 5.70 | 17.50 | 570.37 | 183.50 | 79.40 |
| KS-TGE/NR-2-1 | 27.20 | 1.70 | 5.60 | 16.60 | 630.49 | 222.70 | 76.40 |
| KS-TGE/NR-3-1 | 27.80 | 1.70 | 6.80 | 19.40 | 590.37 | 220.00 | 77.90 |
| KS-TGE/NR-0-0.4 | 26.80 | 1.40 | 4.40 | 15.00 | 621.81 | 220.10 | 80.30 |
| KS-TGE/NR-1-0.4 | 28.90 | 1.40 | 4.60 | 14.80 | 627.97 | 234.70 | 80.00 |
| KS-TGE/NR-2-0.4 | 27.20 | 1.40 | 4.90 | 14.30 | 665.33 | 220.10 | 79.40 |
| KS-TGE/NR-3-0.4 | 27.70 | 1.40 | 5.10 | 15.80 | 634.01 | 223.10 | 79.40 |
Table 3
Aggregate size and dispersion of silica in composite materials"
| 试样 | 平均聚集体尺寸/μm | 分散度/% |
|---|---|---|
| KS-TGE/NR-0-1 | 9.3 | 95.5 |
| KS-TGE/NR-1-1 | 8.5 | 92.0 |
| KS-TGE/NR-2-1 | 9.4 | 93.9 |
| KS-TGE/NR-3-1 | 10.0 | 90.9 |
| KS-TGE/NR-0-0.4 | 10.6 | 95.6 |
| KS-TGE/NR-1-0.4 | 11.3 | 96.9 |
| KS-TGE/NR-2-0.4 | 11.4 | 92.9 |
| KS-TGE/NR-3-0.4 | 10.7 | 93.1 |
| nano-SiO2/NR | 13.6 | 96.9 |
Table 4
Glass transition temperature and loss factor of composites at different temperatures"
| 试样 | tg/℃ | 0 ℃时的tan δ | 60 ℃时的tan δ |
|---|---|---|---|
| nano-SiO2/NR | -41.14 | 0.148 | 0.029 |
| KS-TGE/NR-0-1 | -40.61 | 0.177 | 0.032 |
| KS-TGE/NR-1-1 | -41.10 | 0.148 | 0.033 |
| KS-TGE/NR-2-1 | -42.01 | 0.147 | 0.035 |
| KS-TGE/NR-3-1 | -41.20 | 0.156 | 0.040 |
| KS-TGE/NR-0-0.4 | -41.76 | 0.144 | 0.032 |
| KS-TGE/NR-1-0.4 | -42.24 | 0.142 | 0.036 |
| KS-TGE/NR-2-0.4 | -40.94 | 0.168 | 0.038 |
| KS-TGE/NR-3-0.4 | -42.36 | 0.137 | — |
| [1] | KHAN A H, GHOSH S, PRADHAN B, et al. Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications[J]. Bulletin of the Chemical Society of Japan, 2017, 90(6): 627-648. DOI: 10.1246/bcsj.20170043. |
| [2] | IDA S. Development of light energy conversion materials using two-dimensional inorganic nanosheets[J]. Bulletin of the Chemical Society of Japan, 2015, 88(12): 1619-1628. DOI: 10.1246/bcsj.20150183. |
| [3] |
GEORGAKILAS V, TIWARI J N, KEMP K C, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications[J]. Chemical Reviews, 2016, 116(9): 5464-5519. DOI: 10.1021/acs.chemrev.5b00620.
pmid: 27033639 |
| [4] | HIGGINS D, ZAMANI P, YU A P, et al. The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress[J]. Energy & Environmental Science, 2016, 9(2): 357-390. DOI: 10.1039/C5EE02474A. |
| [5] | JOSHI R K, ALWARAPPAN S, YOSHIMURA M, et al. Graphene oxide: the new membrane material[J]. Applied Materials Today, 2015, 1(1): 1-12. DOI: 10.1016/j.apmt.2015.06.002. |
| [6] | MBAYACHI V B, NDAYIRAGIJE E, SAMMANI T, et al. Graphene synthesis, characterization and its applications: a review[J]. Results in Chemistry, 2021, 3: 100163. DOI: 10.1016/j.rechem.2021.100163. |
| [7] | BERGER C, SONG Z M, LI T B, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics[J]. The Journal of Physical Chemistry B, 2004, 108(52): 19912-19916. DOI: 10.1021/jp040650f. |
| [8] |
ZHANG Y, ZHANG L Y, ZHOU C W. Review of chemical vapor deposition of graphene and related applications[J]. Accounts of Chemical Research, 2013, 46(10): 2329-2339. DOI: 10.1021/ar300203n.
pmid: 23480816 |
| [9] | STANKOVICH S, PINER R D, CHEN X Q, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)[J]. Journal of Materials Chemistry, 2006, 16(2): 155-158. DOI: 10.1039/B512799H. |
| [10] | PAREDES J I, VILLAR-RODIL S, SOLÍS-FERNÁNDEZ P, et al. Preparation, characterization and fundamental studies on graphenes by liquid-phase processing of graphite[J]. Journal of Alloys and Compounds, 2012, 536: S450-S455. DOI: 10.1016/j.jallcom.2011.10.025. |
| [11] |
DEAN C R, YOUNG A F, MERIC I, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 2010, 5(10): 722-726. DOI: 10.1038/nnano.2010.172.
pmid: 20729834 |
| [12] |
MAYOROV A S, GORBACHEV R V, MOROZOV S V, et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature[J]. Nano Letters, 2011, 11(6): 2396-2399. DOI: 10.1021/nl200758b.
pmid: 21574627 |
| [13] |
NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308. DOI: 10.1126/science.1156965.
pmid: 18388259 |
| [14] | BISWAS C, LEE Y H. Graphene versus carbon nanotubes in electronic devices[J]. Advanced Functional Materials, 2011, 21(20): 3806-3826. DOI: 10.1002/adfm.201101241. |
| [15] | LIU H T, LIU Y Q, ZHU D B. Chemical doping of graphene[J]. Journal of Materials Chemistry, 2011, 21(10): 3335-3345. DOI: 10.1039/C0JM02922J. |
| [16] |
DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1): 228-240. DOI: 10.1039/B917103G.
pmid: 20023850 |
| [17] | LI Y, HAN B Y, WEN S P, et al. Effect of the temperature on surface modification of silica and properties of modified silica filled rubber composites[J]. Composites Part A: Applied Science and Manufacturing, 2014, 62: 52-59. DOI: 10.1016/j.compositesa.2014.03.007. |
| [18] | YANG G W, LIAO Z F, YANG Z J, et al. Effects of substitution for carbon black with graphene oxide or graphene on the morphology and performance of natural rubber/carbon black composites[J]. Journal of Applied Polymer Science, 2015, 132(15):41832. DOI: 10.1002/app.41832. |
| [19] | XU T W, JIA Z X, LUO Y F, et al. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites[J]. Applied Surface Science, 2015, 328: 306-313. DOI: 10.1016/j.apsusc.2014.12.029. |
| [20] | CHEN X, GUG J, SOBKOWICZ M J. Role of polymer/filler interactions in the linear viscoelasticity of poly(butylene succinate)/fumed silica nanocomposite[J]. Composites Science and Technology, 2014, 95: 8-15. DOI: 10.1016/j.compscitech.2014.01.025. |
| [21] | CHOI S S, NAH C, JO B W. Properties of natural rubber composites reinforced with silica or carbon black: influence of cure accelerator content and filler dispersion[J]. Polymer International, 2003, 52(8): 1382-1389. DOI: 10.1002/pi.1232. |
| [22] | 徐惠, 史建新, 翟钧, 等. 纳米TiO2表面接枝甲基丙烯酸甲酯的聚合反应[J]. 高分子材料科学与工程, 2008, 24(2): 27-30. DOI: 10.16865/j.cnki.1000-7555.2008.02.007. |
| [23] | NATARAJAN B, NEELY T, RUNGTA A, et al. Thermomechanical properties of bimodal brush modified nanoparticle composites[J]. Macromolecules, 2013, 46(12): 4909-4918. DOI: 10.1021/ma400553c. |
| [24] | TUNLERT A, PRASASSARAKICH P, POOMPRADUB S. Effect of modified silica particles with phenyltriethoxysilane on mechanical and thermal properties of natural rubber composites[J]. Macromolecular Symposia, 2015, 354(1): 62-68. DOI: 10.1002/masy.201400105. |
| [25] | WANG L L, JIANG X Y, WANG C L, et al. Titanium dioxide grafted with silane coupling agents and its use in blue light curing ink[J]. Coloration Technology, 2020, 136(1): 15-22. DOI: 10.1111/cote.12434. |
| [26] | RASHID M H, YUAN Y X. Convergence properties of a restricted Newton-type method for generalized equations with metrically regular mappings[J]. Applicable Analysis, 2022, 101(1): 14-34. DOI: 10.1080/00036811.2017.1392018. |
| [27] | AHMED N, FAN H, DUBOIS P, et al. Nano-engineering and micromolecular science of polysilsesquioxane materials and their emerging applications[J]. Journal of Materials Chemistry A, 2019, 7(38): 21577-21604. DOI: 10.1039/C9TA04575A. |
| [28] | 全国橡胶与橡胶制品标准化技术委员会. 橡胶中炭黑和炭黑/二氧化硅分散的评估快速比较法: GB/T 6030—2006[S]. 北京: 中国标准出版社, 2007. |
| [29] | 全国橡胶与橡胶制品标准化技术委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009. |
| [30] | 全国橡标委橡胶物理和化学试验方法标准化分技术委员会. 硫化橡胶回弹性的测定: GB/T 1681—2009[S]. 北京: 中国标准出版社, 2009. |
| [31] | 全国橡胶与橡胶制品标准化技术委员会通用试验方法分技术委员会. 硫化橡胶耐磨性能的测定: GB/T 1689—2014[S]. 北京: 中国标准出版社, 2015. |
| [32] | 全国纤维增强塑料标准化技术委员会. 聚合物基复合材料玻璃化转变温度试验方法动态力学分析法: GB/T 40396—2021[S]. 北京: 中国标准出版社, 2021. |
| [33] | 张云浩, 翟兰兰, 王彦, 等. 硅烷偶联剂KH-570表面改性纳米SiO2[J]. 材料科学与工程学报, 2012, 30(5): 752-756. DOI: 10.14136/j.cnki.issn1673-2812.2012.05.030. |
| [34] | AHN B, KIM D, KIM K, et al. Effect of the functional group of silanes on the modification of silica surface and the physical properties of solution styrene-butadiene rubber/silica composites[J]. Composite Interfaces, 2019, 26(7): 585-596. DOI: 10.1080/09276440.2018.1514145. |
| [35] | 高瑞丰. 氧化石墨烯天然橡胶复合材料的制备与摩擦磨损性能研究[D]. 北京: 北京化工大学, 2021. |
| [36] | XUE C, GAO H Y, HU G. Viscoelastic and fatigue properties of graphene and carbon black hybrid structure filled natural rubber composites under alternating loading[J]. Construction and Building Materials, 2020, 265: 120299. DOI: 10.1016/j.conbuildmat.2020.120299. |
| [37] | WU W L, WANG J. Effect of KH550 on the preparation and compatibility of carbon fibers reinforced silicone rubber composites[J]. Silicon, 2018, 10(5): 1903-1910. DOI: 10.1007/s12633-017-9700-4. |
| [1] | TIAN Shuo, ZHANG Min, ZHU Jianying, ZHAO Xinfu. Synthesis and properties of efficient antibacterial aquaculture wet curtain paper [J]. Shandong Science, 2025, 38(5): 49-55. |
| [2] | XU Lijie, ZHANG Xu, XU Ruilong, ZHENG Jiawang, JIANG Yiting, ZHAO Shuai, LI Lin. Effects of ammonium polyphosphate and microencapsulated ammonium polyphosphate on NR/BR composite properties [J]. Shandong Science, 2025, 38(4): 86-94. |
| [3] | HUANG Jing, BAI Zhihao, WU Ke, DU Lixin, ZHANG Ruiyun, LI Hong, HUANG Liqian. Properties of radiative-cooling nylon filaments and their knitted fabrics [J]. Shandong Science, 2024, 37(4): 65-74. |
| [4] | XU Lijie, LI Song, LI Lin. Effects of aluminum diethylphosphinate/aluminum hypophosphite on the properties of natural rubber/butadiene rubber composites [J]. Shandong Science, 2024, 37(3): 66-75. |
| [5] | TAN Shuangmei, GUAN Yingdong, ZHAO Shuai, LI Lin. Development of high wear resistant and electrostatic conductive graphene hybrid material/butylene/parabutylene tread rubber [J]. Shandong Science, 2024, 37(2): 55-64. |
| [6] | PAN Xiangyu, JIN Zhao, GUAN Tong, CHEN Beiyi. Controllable bonding preparation of ethylenediamine-N-propyl modified silica gel and its application in ginkgolic acid removal [J]. Shandong Science, 2024, 37(1): 51-58. |
| [7] | WEI Jia, JIN Xiaopeng, XU Xiaojing. Effect of solid-solution treatment on microstructure and properties of extruded Al-5.6Cu-1.7Mg-0.2Zr-0.1Sr-0.6Ti alloy [J]. Shandong Science, 2023, 36(1): 66-73. |
| [8] | LI Zhi, LÜ Sheng-li, LI Yi-fei. Effect of stress level on mechanical properties of 2219 aluminum alloy caused by stress corrosion damage [J]. Shandong Science, 2019, 32(3): 48-56. |
| [9] | ZHOU Ji-xue,ZHUANG Hai-hua,MA Bai-chang, LIU Hong-tao. Study on automatic arc welding procedure of AZ31 magnesium alloy plates [J]. SHANDONG SCIENCE, 2018, 31(6): 28-33. |
| [10] | YAN Xin-yu, WANG Shou-ren,WANG Yong. Preparation and mechanical properties of tungsten carbidebased cemented carbides [J]. SHANDONG SCIENCE, 2018, 31(3): 28-33. |
| [11] | XUE Chuan-yi, WANG Shou-ren, LENG Jin-feng, WANG Gao-qi, QIAO Yang. Tribological properties of modified graphene lubricant [J]. SHANDONG SCIENCE, 2018, 31(2): 45-49. |
| [12] | SHI Ying, MA Xiao-fei, YANG Xiu-juan, LI Yue-ling, LIU Mei. Study on Raman spectra of two dimensional layered SnSe2 nanomaterial with different layers [J]. SHANDONG SCIENCE, 2018, 31(1): 43-. |
| [13] | LIU Na,MENG Xiao-tang,ZHAO De-gang. Effects of B and Gd composite microalloying on microstructure and mechanical properties of AZ91 magnesium alloy [J]. SHANDONG SCIENCE, 2017, 30(5): 37-44. |
| [14] | WANG Li-hu, WANG Shou-ren, WANG Pei-wen, WANG Gao-qi, ZHANG Yong-liang. Preparation of flat skateboard for Go / CF / PTFE high-speed rail bridge spherical bearing and study on its tribological properties [J]. SHANDONG SCIENCE, 2017, 30(3): 45-50. |
| [15] | ZHAO Houliang, ZHOU Jixue, TANG Shouqiu, WANG Jinwei,ZHANG Linlin, CHEN Yanfei, LI Changlong, WU Jianhua. Impact of Sr content on microstructure and mechanical properties of A356 alloy [J]. SHANDONG SCIENCE, 2016, 29(5): 65-69. |
|
||
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits third parties to freely share (i.e., copy and redistribute the material in any medium or format) and adapt (i.e., remix, transform, or build upon the material) the articles published in this journal, provided that appropriate credit is given, a link to the license is provided, and any changes made are indicated. The material may not be used for commercial purposes. For details of the CC BY-NC 4.0 license, please visit: https://creativecommons.org/licenses/by-nc/4.0