Shandong Science ›› 2024, Vol. 37 ›› Issue (1): 69-79.doi: 10.3976/j.issn.1002-4026.20230074
• New Materials • Previous Articles Next Articles
GUO Jingze1(), TAN Shuangmei1, LI Yutong1, LIU Zhihua1, LI Song1, XIN Zhenxiang1, ZHAO Shuai1,2, LI Lin1,*(
)
Received:
2023-04-26
Online:
2024-02-20
Published:
2024-01-26
Contact:
LI Lin
E-mail:g921474559@163.com;qustlilin@163.com
CLC Number:
GUO Jingze, TAN Shuangmei, LI Yutong, LIU Zhihua, LI Song, XIN Zhenxiang, ZHAO Shuai, LI Lin. Effect of graphene-modified silica filler on the properties of natural rubber[J].Shandong Science, 2024, 37(1): 69-79.
Table 1
"
试样 | 配方 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
NR | 白炭黑 | KH570 | TGE | 硬脂酸 | ZnO | 防老剂4010NA | 硫磺 | DM | CZ | ||
nano-SiO2/NR | 100 | 20 | 0 | 0.0 | 3.0 | 5.0 | 3.0 | 2.8 | 0.1 | 1.4 | |
KS-TGE/NR-0-1 | 100 | 20 | 0 | 1.0 | 3.0 | 5.0 | 3.0 | 2.8 | 0.1 | 1.4 | |
KS-TGE/NR-1-1 | 100 | 20 | 1 | 1.0 | 3.0 | 5.0 | 3.0 | 2.8 | 0.1 | 1.4 | |
KS-TGE/NR-2-1 | 100 | 20 | 2 | 1.0 | 3.0 | 5.0 | 3.0 | 2.8 | 0.1 | 1.4 | |
KS-TGE/NR-3-1 | 100 | 20 | 3 | 1.0 | 3.0 | 5.0 | 3.0 | 2.8 | 0.1 | 1.4 | |
KS-TGE/NR-0-0.4 | 100 | 20 | 0 | 0.4 | 3.0 | 5.0 | 3.0 | 2.8 | 0.1 | 1.4 | |
KS-TGE/NR-1-0.4 | 100 | 20 | 1 | 0.4 | 3.0 | 5.0 | 3.0 | 2.8 | 0.1 | 1.4 | |
KS-TGE/NR-2-0.4 | 100 | 20 | 2 | 0.4 | 3.0 | 5.0 | 3.0 | 2.8 | 0.1 | 1.4 | |
KS-TGE/NR-3-0.4 | 100 | 20 | 3 | 0.4 | 3.0 | 5.0 | 3.0 | 2.8 | 0.1 | 1.4 |
Table 2
Physical properties of KS-TGE/NR composites"
试样 | 拉伸强度/ MPa | 100%定伸 应力/MPa | 300%定伸 应力/MPa | 500%定伸 应力/MPa | 断裂伸长 率/% | 力最大 值/N | 回弹/% |
---|---|---|---|---|---|---|---|
KS-TGE/NR-0-1 | 21.20 | 1.40 | 4.70 | 15.30 | 585.78 | 209.20 | 79.70 |
KS-TGE/NR-1-1 | 22.40 | 1.50 | 5.70 | 17.50 | 570.37 | 183.50 | 79.40 |
KS-TGE/NR-2-1 | 27.20 | 1.70 | 5.60 | 16.60 | 630.49 | 222.70 | 76.40 |
KS-TGE/NR-3-1 | 27.80 | 1.70 | 6.80 | 19.40 | 590.37 | 220.00 | 77.90 |
KS-TGE/NR-0-0.4 | 26.80 | 1.40 | 4.40 | 15.00 | 621.81 | 220.10 | 80.30 |
KS-TGE/NR-1-0.4 | 28.90 | 1.40 | 4.60 | 14.80 | 627.97 | 234.70 | 80.00 |
KS-TGE/NR-2-0.4 | 27.20 | 1.40 | 4.90 | 14.30 | 665.33 | 220.10 | 79.40 |
KS-TGE/NR-3-0.4 | 27.70 | 1.40 | 5.10 | 15.80 | 634.01 | 223.10 | 79.40 |
Table 3
Aggregate size and dispersion of silica in composite materials"
试样 | 平均聚集体尺寸/μm | 分散度/% |
---|---|---|
KS-TGE/NR-0-1 | 9.3 | 95.5 |
KS-TGE/NR-1-1 | 8.5 | 92.0 |
KS-TGE/NR-2-1 | 9.4 | 93.9 |
KS-TGE/NR-3-1 | 10.0 | 90.9 |
KS-TGE/NR-0-0.4 | 10.6 | 95.6 |
KS-TGE/NR-1-0.4 | 11.3 | 96.9 |
KS-TGE/NR-2-0.4 | 11.4 | 92.9 |
KS-TGE/NR-3-0.4 | 10.7 | 93.1 |
nano-SiO2/NR | 13.6 | 96.9 |
Table 4
Glass transition temperature and loss factor of composites at different temperatures"
试样 | tg/℃ | 0 ℃时的tan δ | 60 ℃时的tan δ |
---|---|---|---|
nano-SiO2/NR | -41.14 | 0.148 | 0.029 |
KS-TGE/NR-0-1 | -40.61 | 0.177 | 0.032 |
KS-TGE/NR-1-1 | -41.10 | 0.148 | 0.033 |
KS-TGE/NR-2-1 | -42.01 | 0.147 | 0.035 |
KS-TGE/NR-3-1 | -41.20 | 0.156 | 0.040 |
KS-TGE/NR-0-0.4 | -41.76 | 0.144 | 0.032 |
KS-TGE/NR-1-0.4 | -42.24 | 0.142 | 0.036 |
KS-TGE/NR-2-0.4 | -40.94 | 0.168 | 0.038 |
KS-TGE/NR-3-0.4 | -42.36 | 0.137 | — |
[1] | KHAN A H, GHOSH S, PRADHAN B, et al. Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications[J]. Bulletin of the Chemical Society of Japan, 2017, 90(6): 627-648. DOI: 10.1246/bcsj.20170043. |
[2] | IDA S. Development of light energy conversion materials using two-dimensional inorganic nanosheets[J]. Bulletin of the Chemical Society of Japan, 2015, 88(12): 1619-1628. DOI: 10.1246/bcsj.20150183. |
[3] |
GEORGAKILAS V, TIWARI J N, KEMP K C, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications[J]. Chemical Reviews, 2016, 116(9): 5464-5519. DOI: 10.1021/acs.chemrev.5b00620.
pmid: 27033639 |
[4] | HIGGINS D, ZAMANI P, YU A P, et al. The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress[J]. Energy & Environmental Science, 2016, 9(2): 357-390. DOI: 10.1039/C5EE02474A. |
[5] | JOSHI R K, ALWARAPPAN S, YOSHIMURA M, et al. Graphene oxide: the new membrane material[J]. Applied Materials Today, 2015, 1(1): 1-12. DOI: 10.1016/j.apmt.2015.06.002. |
[6] | MBAYACHI V B, NDAYIRAGIJE E, SAMMANI T, et al. Graphene synthesis, characterization and its applications: a review[J]. Results in Chemistry, 2021, 3: 100163. DOI: 10.1016/j.rechem.2021.100163. |
[7] | BERGER C, SONG Z M, LI T B, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics[J]. The Journal of Physical Chemistry B, 2004, 108(52): 19912-19916. DOI: 10.1021/jp040650f. |
[8] |
ZHANG Y, ZHANG L Y, ZHOU C W. Review of chemical vapor deposition of graphene and related applications[J]. Accounts of Chemical Research, 2013, 46(10): 2329-2339. DOI: 10.1021/ar300203n.
pmid: 23480816 |
[9] | STANKOVICH S, PINER R D, CHEN X Q, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)[J]. Journal of Materials Chemistry, 2006, 16(2): 155-158. DOI: 10.1039/B512799H. |
[10] | PAREDES J I, VILLAR-RODIL S, SOLÍS-FERNÁNDEZ P, et al. Preparation, characterization and fundamental studies on graphenes by liquid-phase processing of graphite[J]. Journal of Alloys and Compounds, 2012, 536: S450-S455. DOI: 10.1016/j.jallcom.2011.10.025. |
[11] |
DEAN C R, YOUNG A F, MERIC I, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 2010, 5(10): 722-726. DOI: 10.1038/nnano.2010.172.
pmid: 20729834 |
[12] |
MAYOROV A S, GORBACHEV R V, MOROZOV S V, et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature[J]. Nano Letters, 2011, 11(6): 2396-2399. DOI: 10.1021/nl200758b.
pmid: 21574627 |
[13] |
NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308. DOI: 10.1126/science.1156965.
pmid: 18388259 |
[14] | BISWAS C, LEE Y H. Graphene versus carbon nanotubes in electronic devices[J]. Advanced Functional Materials, 2011, 21(20): 3806-3826. DOI: 10.1002/adfm.201101241. |
[15] | LIU H T, LIU Y Q, ZHU D B. Chemical doping of graphene[J]. Journal of Materials Chemistry, 2011, 21(10): 3335-3345. DOI: 10.1039/C0JM02922J. |
[16] |
DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1): 228-240. DOI: 10.1039/B917103G.
pmid: 20023850 |
[17] | LI Y, HAN B Y, WEN S P, et al. Effect of the temperature on surface modification of silica and properties of modified silica filled rubber composites[J]. Composites Part A: Applied Science and Manufacturing, 2014, 62: 52-59. DOI: 10.1016/j.compositesa.2014.03.007. |
[18] | YANG G W, LIAO Z F, YANG Z J, et al. Effects of substitution for carbon black with graphene oxide or graphene on the morphology and performance of natural rubber/carbon black composites[J]. Journal of Applied Polymer Science, 2015, 132(15):41832. DOI: 10.1002/app.41832. |
[19] | XU T W, JIA Z X, LUO Y F, et al. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites[J]. Applied Surface Science, 2015, 328: 306-313. DOI: 10.1016/j.apsusc.2014.12.029. |
[20] | CHEN X, GUG J, SOBKOWICZ M J. Role of polymer/filler interactions in the linear viscoelasticity of poly(butylene succinate)/fumed silica nanocomposite[J]. Composites Science and Technology, 2014, 95: 8-15. DOI: 10.1016/j.compscitech.2014.01.025. |
[21] | CHOI S S, NAH C, JO B W. Properties of natural rubber composites reinforced with silica or carbon black: influence of cure accelerator content and filler dispersion[J]. Polymer International, 2003, 52(8): 1382-1389. DOI: 10.1002/pi.1232. |
[22] | 徐惠, 史建新, 翟钧, 等. 纳米TiO2表面接枝甲基丙烯酸甲酯的聚合反应[J]. 高分子材料科学与工程, 2008, 24(2): 27-30. DOI: 10.16865/j.cnki.1000-7555.2008.02.007. |
[23] | NATARAJAN B, NEELY T, RUNGTA A, et al. Thermomechanical properties of bimodal brush modified nanoparticle composites[J]. Macromolecules, 2013, 46(12): 4909-4918. DOI: 10.1021/ma400553c. |
[24] | TUNLERT A, PRASASSARAKICH P, POOMPRADUB S. Effect of modified silica particles with phenyltriethoxysilane on mechanical and thermal properties of natural rubber composites[J]. Macromolecular Symposia, 2015, 354(1): 62-68. DOI: 10.1002/masy.201400105. |
[25] | WANG L L, JIANG X Y, WANG C L, et al. Titanium dioxide grafted with silane coupling agents and its use in blue light curing ink[J]. Coloration Technology, 2020, 136(1): 15-22. DOI: 10.1111/cote.12434. |
[26] | RASHID M H, YUAN Y X. Convergence properties of a restricted Newton-type method for generalized equations with metrically regular mappings[J]. Applicable Analysis, 2022, 101(1): 14-34. DOI: 10.1080/00036811.2017.1392018. |
[27] | AHMED N, FAN H, DUBOIS P, et al. Nano-engineering and micromolecular science of polysilsesquioxane materials and their emerging applications[J]. Journal of Materials Chemistry A, 2019, 7(38): 21577-21604. DOI: 10.1039/C9TA04575A. |
[28] | 全国橡胶与橡胶制品标准化技术委员会. 橡胶中炭黑和炭黑/二氧化硅分散的评估快速比较法: GB/T 6030—2006[S]. 北京: 中国标准出版社, 2007. |
[29] | 全国橡胶与橡胶制品标准化技术委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009. |
[30] | 全国橡标委橡胶物理和化学试验方法标准化分技术委员会. 硫化橡胶回弹性的测定: GB/T 1681—2009[S]. 北京: 中国标准出版社, 2009. |
[31] | 全国橡胶与橡胶制品标准化技术委员会通用试验方法分技术委员会. 硫化橡胶耐磨性能的测定: GB/T 1689—2014[S]. 北京: 中国标准出版社, 2015. |
[32] | 全国纤维增强塑料标准化技术委员会. 聚合物基复合材料玻璃化转变温度试验方法动态力学分析法: GB/T 40396—2021[S]. 北京: 中国标准出版社, 2021. |
[33] | 张云浩, 翟兰兰, 王彦, 等. 硅烷偶联剂KH-570表面改性纳米SiO2[J]. 材料科学与工程学报, 2012, 30(5): 752-756. DOI: 10.14136/j.cnki.issn1673-2812.2012.05.030. |
[34] | AHN B, KIM D, KIM K, et al. Effect of the functional group of silanes on the modification of silica surface and the physical properties of solution styrene-butadiene rubber/silica composites[J]. Composite Interfaces, 2019, 26(7): 585-596. DOI: 10.1080/09276440.2018.1514145. |
[35] | 高瑞丰. 氧化石墨烯天然橡胶复合材料的制备与摩擦磨损性能研究[D]. 北京: 北京化工大学, 2021. |
[36] | XUE C, GAO H Y, HU G. Viscoelastic and fatigue properties of graphene and carbon black hybrid structure filled natural rubber composites under alternating loading[J]. Construction and Building Materials, 2020, 265: 120299. DOI: 10.1016/j.conbuildmat.2020.120299. |
[37] | WU W L, WANG J. Effect of KH550 on the preparation and compatibility of carbon fibers reinforced silicone rubber composites[J]. Silicon, 2018, 10(5): 1903-1910. DOI: 10.1007/s12633-017-9700-4. |
[1] | HUANG Jing, BAI Zhihao, WU Ke, DU Lixin, ZHANG Ruiyun, LI Hong, HUANG Liqian. Properties of radiative-cooling nylon filaments and their knitted fabrics [J]. Shandong Science, 2024, 37(4): 65-74. |
[2] | XU Lijie, LI Song, LI Lin. Effects of aluminum diethylphosphinate/aluminum hypophosphite on the properties of natural rubber/butadiene rubber composites [J]. Shandong Science, 2024, 37(3): 66-75. |
[3] | TAN Shuangmei, GUAN Yingdong, ZHAO Shuai, LI Lin. Development of high wear resistant and electrostatic conductive graphene hybrid material/butylene/parabutylene tread rubber [J]. Shandong Science, 2024, 37(2): 55-64. |
[4] | PAN Xiangyu, JIN Zhao, GUAN Tong, CHEN Beiyi. Controllable bonding preparation of ethylenediamine-N-propyl modified silica gel and its application in ginkgolic acid removal [J]. Shandong Science, 2024, 37(1): 51-58. |
[5] | WEI Jia, JIN Xiaopeng, XU Xiaojing. Effect of solid-solution treatment on microstructure and properties of extruded Al-5.6Cu-1.7Mg-0.2Zr-0.1Sr-0.6Ti alloy [J]. Shandong Science, 2023, 36(1): 66-73. |
[6] | LI Zhi, LÜ Sheng-li, LI Yi-fei. Effect of stress level on mechanical properties of 2219 aluminum alloy caused by stress corrosion damage [J]. Shandong Science, 2019, 32(3): 48-56. |
[7] | ZHOU Ji-xue,ZHUANG Hai-hua,MA Bai-chang, LIU Hong-tao. Study on automatic arc welding procedure of AZ31 magnesium alloy plates [J]. SHANDONG SCIENCE, 2018, 31(6): 28-33. |
[8] | YAN Xin-yu, WANG Shou-ren,WANG Yong. Preparation and mechanical properties of tungsten carbidebased cemented carbides [J]. SHANDONG SCIENCE, 2018, 31(3): 28-33. |
[9] | XUE Chuan-yi, WANG Shou-ren, LENG Jin-feng, WANG Gao-qi, QIAO Yang. Tribological properties of modified graphene lubricant [J]. SHANDONG SCIENCE, 2018, 31(2): 45-49. |
[10] | SHI Ying, MA Xiao-fei, YANG Xiu-juan, LI Yue-ling, LIU Mei. Study on Raman spectra of two dimensional layered SnSe2 nanomaterial with different layers [J]. SHANDONG SCIENCE, 2018, 31(1): 43-. |
[11] | LIU Na,MENG Xiao-tang,ZHAO De-gang. Effects of B and Gd composite microalloying on microstructure and mechanical properties of AZ91 magnesium alloy [J]. SHANDONG SCIENCE, 2017, 30(5): 37-44. |
[12] | WANG Li-hu, WANG Shou-ren, WANG Pei-wen, WANG Gao-qi, ZHANG Yong-liang. Preparation of flat skateboard for Go / CF / PTFE high-speed rail bridge spherical bearing and study on its tribological properties [J]. SHANDONG SCIENCE, 2017, 30(3): 45-50. |
[13] | ZHAO Houliang, ZHOU Jixue, TANG Shouqiu, WANG Jinwei,ZHANG Linlin, CHEN Yanfei, LI Changlong, WU Jianhua. Impact of Sr content on microstructure and mechanical properties of A356 alloy [J]. SHANDONG SCIENCE, 2016, 29(5): 65-69. |
[14] | LIN Tao,LIU Yun-teng, ZHOU Ji-xue, ZHUANG Hai-hua,MA Bai-chang, YANG Yuan-sheng. Impact of extrusion process on microstructure and mechanical properties of high extrusion ratio AZ31B magnesium alloy [J]. SHANDONG SCIENCE, 2016, 29(4): 39-43. |
[15] |
LIU Yun-teng,LIN Tao,ZHOU Ji-xue,ZHUANG Hai-hua,MA Bai-chang,YANG Yuan-sheng.
Impact of extrusion ratio on microstructure and indoor temperature mechanical properties of AZ31B Magnesium alloy
[J]. SHANDONG SCIENCE, 2016, 29(3): 23-.
|
|