Shandong Science ›› 2022, Vol. 35 ›› Issue (4): 58-67.doi: 10.3976/j.issn.1002-4026.2022.04.008
• Pharmacology and Toxicology • Previous Articles Next Articles
ZHU Xiao-li1(), GAO Jia-rong1,2,*(
), SHI Miao-miao1, QIN Xiu-juan1, WEI Liang-bing1, LIU Tao1, ZHANG Wei1
Received:
2021-08-01
Online:
2022-08-20
Published:
2022-07-25
Contact:
GAO Jia-rong
E-mail:zhuxiaoli@stu.ahtcm.edu.cn;zyfygjr2006@163.com
CLC Number:
ZHU Xiao-li, GAO Jia-rong, SHI Miao-miao, QIN Xiu-juan, WEI Liang-bing, LIU Tao, ZHANG Wei. Visual analysis of the mechanism of Astragali Radix-Imperatae Rhizomain in the treatment of chronic glomerulonephritis[J].Shandong Science, 2022, 35(4): 58-67.
Table 1
Screening results of part of the active components of Astragali Radix-Imperatae Rhizomain"
成分ID | 成分 | OB/% | DL | 药物 |
---|---|---|---|---|
MOL000098 | 槲皮素 | 46.43 | 0.28 | 黄芪 |
MOL000392 | 芒柄花黄素 | 69.67 | 0.21 | 黄芪 |
MOL000354 | 异鼠李素 | 49.6 | 0.31 | 黄芪 |
MOL000239 | 华良姜素 | 50.83 | 0.29 | 黄芪 |
MOL000371 | 3,9-二-O-甲基紫檀酚 | 53.74 | 0.48 | 黄芪 |
MOL000378 | 7-O-甲基-异微凸剑叶莎醇 | 74.69 | 0.30 | 黄芪 |
MOL000296 | 常春藤皂甙元 | 36.91 | 0.75 | 黄芪 |
MOL000211 | 白桦脂酸 | 55.38 | 0.78 | 黄芪 |
MOL000033 | β-谷甾醇 | 36.23 | 0.78 | 黄芪 |
MOL000359 | 谷甾醇 | 36.91 | 0.75 | 黄芪 |
Table 2
Part of KEGG pathway enrichment of drug and disease intersection targets"
通路ID | 通路 | KEGG分类 | P值 | 背景基因数 | 前景基因数 |
---|---|---|---|---|---|
ko04933 | AGE-RAGE信号通路在糖尿病并发症中的应用 | 内分泌和代谢性疾病 | 1.17×10-33 | 114 | 33 |
ko05200 | 癌症中的途径 | 癌症 | 5.26×10-33 | 550 | 57 |
ko05418 | 流体剪切应力和动脉粥样硬化 | 心血管疾病 | 4.48×10-28 | 149 | 32 |
ko05161 | 乙型肝炎 | 传染性疾病 | 9.87×10-26 | 160 | 31 |
ko04657 | IL-17信号传导途径 | 免疫系统 | 1.03×10-21 | 106 | 24 |
ko04668 | TNF信号传导途径 | 信号转导 | 1.01×10-20 | 130 | 25 |
ko05215 | 前列腺癌 | 癌症 | 2.91×10-18 | 101 | 21 |
ko05142 | 恰加斯病(美洲锥虫病) | 传染性疾病 | 3.54×10-18 | 116 | 22 |
ko05167 | 卡波西肉瘤相关的疱疹病毒感染 | 传染性疾病 | 4.53×10-18 | 241 | 29 |
ko05219 | 膀胱癌 | 癌症 | 4.74×10-17 | 43 | 15 |
[1] |
李大凤, 张明霞. 健脾益肾祛瘀泄浊方对慢性肾小球肾炎患者肾功能及蛋白尿的影响研究[J]. 中药材, 2014, 37(1):169-171. DOI: 10.13863/j.issn1001-4454.2014.01.013.
doi: 10.13863/j.issn1001-4454.2014.01.013 |
[2] |
海江, 刘芳. 参芪地黄汤治疗慢性肾小球肾炎气阴两虚证临床疗效及对免疫功能影响[J]. 辽宁中医药大学学报, 2021, 23(7):131-134. DOI: 10.13194/j.issn.1673-842x.2021.07.027.
doi: 10.13194/j.issn.1673-842x.2021.07.027 |
[3] |
LIM W H, WONG G, MCDONALD S P, et al. Long-term outcomes of kidney transplant recipients with end-stage kidney disease attributed to presumed/advanced glomerulonephritis or unknown cause[J]. Scientific Reports, 2018, 8:9021. DOI: 10.1038/s41598-018-27151-4.
doi: 10.1038/s41598-018-27151-4 |
[4] |
叶茜, 李玲, 孔薇. 孔薇治疗慢性肾炎经验[J]. 湖南中医杂志, 2021, 37(1):23-25. DOI: 10.16808/j.cnki.issn1003-7705.2021.01.007.
doi: 10.16808/j.cnki.issn1003-7705.2021.01.007 |
[5] | 赵琳娜, 刘丽, 李洪艳, 等. 昆仙胶囊治疗慢性肾炎的疗效及免疫机制研究[J]. 中国中西医结合肾病杂志, 2021, 22(4):332-334. |
[6] |
KASAP B, CARMAN K B, YIS U. A case of acute post-streptococcal glomerulonephritis that developed posterior reversible encephalopathy syndrome[J]. Türk Pediatri Arşivi, 2015, 49(4):348-352. DOI: 10.5152/tpa.2014.430.
doi: 10.5152/tpa.2014.430 |
[7] |
马思佳, 赵明明, 常美莹, 等. 黄芪治疗慢性肾炎中的网络药理学研究[J]. 世界中西医结合杂志, 2020, 15(8):1467-1472. DOI: 10.13935/j.cnki.sjzx.200822.
doi: 10.13935/j.cnki.sjzx.200822 |
[8] | 沈良兰. 黄芪注射液治疗狼疮性肾炎的临证体会[J]. 中国中西医结合肾病杂志, 2003, 4(7):419-420. |
[9] |
白玉新, 傅亮, 高进. 黄芪对缺血性急性肾功能衰竭的保护作用[J]. 中国实验方剂学杂志, 2009, 15(7):74-76. DOI: 10.13422/j.cnki.syfjx.2009.07.037.
doi: 10.13422/j.cnki.syfjx.2009.07.037 |
[10] |
桂定坤, 顾勇, 彭艾, 等. 黄芪水提物对健康人尿钠排泄的影响及机制研究[J]. 中华肾脏病杂志, 2007(4):214-218. DOI: 10.3760/j.issn:1001-7097.2007.04.003.
doi: 10.3760/j.issn:1001-7097.2007.04.003 |
[11] | 燕玉军. 小蓟白茅根藕节治疗慢性肾小球肾炎血尿蛋白尿临床疗效[J]. 光明中医, 2017, 32(4):539-541. |
[12] |
陈兰英, 陈卓, 王昌芹, 等. 白茅根不同提取物对阿霉素肾病大鼠的保护作用及对TGF-β1、NF-κB p65分子表达的影响[J]. 中药材, 2015, 38(11):2342-2347. DOI: 10.13863/j.issn1001-4454.2015.11.027.
doi: 10.13863/j.issn1001-4454.2015.11.027 |
[13] |
许博文, 吴静远, 李杰, 等. 基于网络药理学探讨百合乌药方治疗胃癌的分子生物学机制[J]. 中国医院药学杂志, 2021, 41(5):442-449. DOI: 10.13286/j.1001-5213.2021.05.02.
doi: 10.13286/j.1001-5213.2021.05.02 |
[14] | 吴朗杰, 赵春燕, 战丽彬. 基于网络药理学和分子对接研究白花蛇舌草和半枝莲药对治疗宫颈癌的作用机制[J]. 中草药, 2021, 52(4):1049-1058. |
[15] |
RU J L, LI P, WANG J N, et al. TCMSP:a database of systems pharmacology for drug discovery from herbal medicines[J]. Journal of Cheminformatics, 2014, 6:13. DOI: 10.1186/1758-2946-6-13.
doi: 10.1186/1758-2946-6-13 |
[16] |
LIU Z Y, GUO F F, WANG Y, et al. BATMAN-TCM:a bioinformatics analysis tool for molecular mechANism of traditional Chinese medicine[J]. Scientific Reports, 2016, 6:21146. DOI: 10.1038/srep21146.
doi: 10.1038/srep21146 |
[17] |
BREUZA L, POUX S, ESTREICHER A, et al. The UniProtKB guide to the human proteome[J]. Database, 2016, 2016:bav120. DOI: 10.1093/database/bav120.
doi: 10.1093/database/bav120 |
[18] |
LI W H, HAN J R, REN P P, et al. Exploration of the mechanism of Zisheng Shenqi decoction against gout arthritis using network pharmacology[J]. Computational Biology and Chemistry, 2021, 90:107358. DOI: 10.1016/j.compbiolchem.2020.107358.
doi: 10.1016/j.compbiolchem.2020.107358 |
[19] | STELZER G, ROSEN N, PLASCHKES I, et al. The GeneCardssuite:From gene data mining to disease genome sequence analyses[EB/OL]. [2021-05-12]. https://doi.org/10.1002/cpbi.5. |
[20] | AMBERGER J S, HAMOSH A. Searching online Mendelian inheritance in man (OMIM):a knowledgebase of human genes and genetic phenotypes[EB/OL]. [2021-05-12]. https://doi.org/10.1002/cpbi.27. |
[21] |
PIÑERO J, RAMÍREZ-ANGUITA J M, SAÜCH-PITARCH J, et al. The DisGeNET knowledge platform for disease genomics:2019 update[J]. Nucleic Acids Research, 2020, 48(D1):D845-D855. DOI: 10.1093/nar/gkz1021.
doi: 10.1093/nar/gkz1021 |
[22] |
WISHART D S, FEUNANG Y D, GUO A C, et al. DrugBank 5.0:a major update to the DrugBank database for 2018[J]. Nucleic Acids Research, 2018, 46(D1):D1074-D1082. DOI: 10.1093/nar/gkx1037.
doi: 10.1093/nar/gkx1037 |
[23] |
GUO S Y, WU J R, ZHOU W, et al. Investigating the multi-target pharmacological mechanism of Danhong injection acting on unstable angina by combined network pharmacology and molecular docking[J]. BMC Complementary Medicine and Therapies, 2020, 20(1):1-14. DOI: 10.1186/s12906-020-2853-5.
doi: 10.1186/s12906-020-2853-5 |
[24] |
SZKLARCZYK D, MORRIS J H, COOK H, et al. The STRING database in 2017:quality-controlled protein-protein association networks, made broadly accessible[J]. Nucleic Acids Research, 2017, 45(D1):D362-D368. DOI: 10.1093/nar/gkw937.
doi: 10.1093/nar/gkw937 |
[25] |
ZENG Q, LI L F, JIN Y, et al. A network pharmacology approach to reveal the underlying mechanisms of Paeonia lactiflora pall. on the treatment of Alzheimer's disease[J]. Evidence-Based Complementary and Alternative Medicine, 2019, 2019:1-12. DOI: 10.1155/2019/8706589.
doi: 10.1155/2019/8706589 |
[26] |
FAN Y H, LIU W, JIN Y, et al. Integrated molecular docking with network pharmacology to reveal the molecular mechanism of simiao powder in the treatment of acute gouty arthritis[J]. Evidence-Based Complementary and Alternative Medicine, 2021, 2021:1-15. DOI: 10.1155/2021/5570968.
doi: 10.1155/2021/5570968 |
[27] |
GUPTA A, BHALLA K, NANDA S, et al. Epidemiology and clinical outcomes of acute glomerulonephritis in a teaching hospital in North India[J]. Journal of Family Medicine and Primary Care, 2019, 8(3):934. DOI: 10.4103/jfmpc.jfmpc_57_19.
doi: 10.4103/jfmpc.jfmpc_57_19 |
[28] |
LIU B H, LIN J, BAI L X, et al. Paeoniflorin inhibits mesangial cell proliferation and inflammatory response in rats with mesangial proliferative glomerulonephritis through PI3K/AKT/GSK-3β pathway[J]. Frontiers in Pharmacology, 2019, 10:978. DOI: 10.3389/fphar.2019.00978.
doi: 10.3389/fphar.2019.00978 |
[29] |
YUAN K, ZHU Q Q, LU Q Y, et al. Quercetin alleviates rheumatoid arthritis by inhibiting neutrophil inflammatory activities[J]. The Journal of Nutritional Biochemistry, 2020, 84:108454. DOI: 10.1016/j.jnutbio.2020.108454.
doi: 10.1016/j.jnutbio.2020.108454 |
[30] |
LIU Y, YU C, JI K, et al. Quercetin reduces TNF-α-induced mesangial cell proliferation and inhibits PTX3 production:involvement of NF-κB signaling pathway[J]. Phytotherapy Research, 2019, 33(9):2401-2408. DOI: 10.1002/ptr.6430.
doi: 10.1002/ptr.6430 |
[31] |
ISHIKAWA Y, KITAMURA M. Bioflavonoid quercetin inhibits mitosis and apoptosis of glomerular cells in vitro and in vivo[J]. Biochemical and Biophysical Research Communications, 2000, 279(2):629-634. DOI: 10.1006/bbrc.2000.4016.
doi: 10.1006/bbrc.2000.4016 |
[32] |
ZHU S, QIAN Y C. IL-17/IL-17 receptor system in autoimmune disease:mechanisms and therapeutic potential[J]. Clinical Science, 2012, 122(11):487-511. DOI: 10.1042/cs20110496.
doi: 10.1042/cs20110496 |
[33] |
LU R R, CHEN J Q, LIU B H, et al. Protective role of Astragaloside IV in chronic glomerulonephritis by activating autophagy through PI3K / AKT / AS160 pathway[J]. Phytotherapy Research, 2020, 34(12):3236-3248. DOI: 10.1002/ptr.6772.
doi: 10.1002/ptr.6772 |
[34] |
张晓雪, 王璐瑶, 尚进, 等. 高糖环境下趋化素与其受体ChemR23通过活化p38 MAPK促进肾小球内皮细胞炎性因子IL-6、TNF-α的表达[J]. 中华肾脏病杂志, 2017, 33(7):524-530. DOI: 10.3760/cma.j.issn.1001-7097.2017.07.007.
doi: 10.3760/cma.j.issn.1001-7097.2017.07.007 |
[35] | LI S, ZHANG B. Traditional Chinese medicine network pharmacology:Theory, methodology and application[J]. Chinese Journal of Natural Medicines, 2013, 11(2):110-120. DOI:10.1016/S1875-5364(13)60037-0. |
[36] |
CHEBOTAREVA N V, VINOGRADOV A A, GINDIS A A, et al. The balance of proinflammatory cytokines and Treg cells in chronic glomerulonephritis[J]. Terapevticheskii Arkhiv, 2020, 92(6):46-52. DOI: 10.26442/00403660.2020.06.000671.
doi: 10.26442/00403660.2020.06.000671 |
|