[1] |
徐烨昕, 陆芬. 基于组合预测方法的郑州市货运周转量预测研究[J]. 洛阳理工学院学报(自然科学版), 2022, 32(2):81-86. DOI:10.3969/j.issn.1674-5043.2022.02.014.
|
[2] |
颜永勤. 基于人工神经网络模型的物流业货运周转量预测[J]. 经济研究导刊, 2019(25): 41-43. DOI:10.3969/j.issn.1673-291X.2019.25.017.
|
[3] |
李先洋. 我国全社会货物周转量波动特征分析及预测研究[D]. 淮南: 安徽理工大学, 2022.
|
[4] |
吴玉国, 李晓迪. 基于灰色-马尔科夫链的区域物流需求预测[J]. 南阳理工学院学报, 2020, 12(6): 1-5. DOI: 10.16827/j.cnki.41-1404/z.2020.06.001.
|
[5] |
徐唯祎. 基于特征选择和算法融合的铁路货运需求预测研究[D]. 南昌: 华东交通大学, 2020.
|
[6] |
LIASHENKO V, IVANOV S, TRUSHKINA N. A conceptual approach to forming a transport and logistics cluster as a component of the region's innovative infrastructure (on the example of prydniprovsky economic region of Ukraine)[J]. Virtual Economics, 2021, 4(1):19-53. DOI:10.34021/ve.2021.04.01(2).
|
[7] |
湛祎晴. 大数据背景下预测对产品质量和库存的影响[D]. 武汉: 华中科技大学, 2020.
|
[8] |
蒋诗泉, 刘思峰, 刘中侠, 等. 灰色面板数据视域下的相似性和接近性关联度模型拓展[J]. 运筹与管理, 2019, 28(4): 163-168. DOI: 10.12005/orms.2019.0092.
|
[9] |
LI L, ZHANG Q W, ZHANG T, et al. Optimum route and transport mode selection of multimodal transport with time window under uncertain conditions[J]. Mathematics, 2023, 11(14): 3244. DOI: 10.3390/math11143244.
|
[10] |
ZHAO Z F, et al. A composite likelihood-based approach for change-point detection in spatio-temporal processes[EB/OL]. [2024-12-01]. https://arxiv.org/abs/1904.06340v3.
|
[11] |
SADEGHIAN P, GOLSHAN A, ZHAO M X, et al. A deep semi-supervised machine learning algorithm for detecting transportation modes based on GPS tracking data[J]. Transportation, 2024: 1-21. DOI: 10.1007/s11116-024-10472-x.
|
[12] |
SHI R, MORRIS Q. Segmenting hybrid trajectories using latent odes[EB/OL].[2024-12-01]. http://arxiv.org/abs/2105.03835.
|
[13] |
ZHANG X Y, BAO J, et al. Prediction of China's grain consumption from the perspective of sustainable development:Based on GM(1, 1) model[J]. Sustainability, 2022, 14(17): 10792. DOI: 10.3390/su141710792.
|
[14] |
XIAO Y, JIN Z Z. The forecast research of linear regression forecast model in national economy[J]. OALib, 2021, 8(8): 1-17. DOI: 10.4236/oalib.1107797.
|
[15] |
ARUNKUMAR K E, KALAGA D V, MOHAN SAI KUMAR C, et al. Comparative analysis of Gated Recurrent Units (GRU), long Short-Term memory (LSTM) cells, autoregressive Integrated moving average (ARIMA), seasonal autoregressive Integrated moving average (SARIMA) for forecasting COVID-19 trends[J]. Alexandria Engineering Journal, 2022, 61(10): 7585-7603. DOI: 10.1016/j.aej.2022.01.011.
|
[16] |
MARTÍNEZ-ACOSTA L, MEDRANO-BARBOZA J P, LÓPEZ-RAMOS Á, et al. SARIMA approach to generating synthetic monthly rainfall in the sinú river watershed in Colombia[J]. Atmosphere, 2020, 11(6): 602. DOI: 10.3390/atmos11060602.
|