[1] |
交通运输部. 我国高速公路总里程达17.7万公里[EB/OL].[2024-07-15]. https://baijiahao.baidu.com/s?id=1758612780478503239&wfr=spider&for=pc,2023-02-23.
|
[2] |
HU L, BAO X Q, et al. A study on correlation of traffic accident tendency with driver characters using In-depth traffic accident data[J]. Journal of Advanced Transportation, 2020, 2020: 9084245. DOI: 10.1155/2020/9084245.
|
[3] |
MOHAMMED A Z, ABDULLAHN M, AL-HUSSAINI H I. Review of incident duration prediction methods[J]. International Journal of Science and Research, 2020, 9(1):292-298.
|
[4] |
康国祥, 方守恩. 基于风险分析的交通事件持续时间预测[J]. 同济大学学报(自然科学版), 2012, 40(2):241-245.
|
[5] |
陈程, 张兰芳, 汪尚天. 高速公路危化品事件处置持续时间预测模型[J]. 交通信息与安全, 2017, 35(1): 55-61. DOI: 10.3963/j.issn.1674-4861.2017.01.007.
|
[6] |
许宏科, 赵威, 杨孟, 等. 基于改进BPNN的高速公路交通事故持续时间预测[J]. 华东交通大学学报, 2020, 37(5): 60-65.
|
[7] |
魏丹. 基于机器学习的交通状态判别与预测方法[D]. 长春: 吉林大学, 2020.
|
[8] |
吕路, 李杰, 郭忠印, 等. 高速公路交通事故持续时间计算方法研究[J]. 公路交通科技, 2022, 39(12): 155-162. DOI: 10.3969/j.issn.1002-0268.2022.12.019.
|
[9] |
SHENG X, et al. A deep fusion model based on restricted Boltzmann machines for traffic accident duration prediction[J]. Engineering Applications of Artificial Intelligence, 2020, 93: 103686. DOI: 10.1016/j.engappai.2020.103686.
|
[10] |
柴涛. 基于机器学习的交通事故持续时间预测算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
|
[11] |
陈娇娜, 靳引利, 陶伟俊, 等. 基于文本信息的高速公路事故持续时间中介效应研究[J]. 中国安全科学学报, 2023, 33(4):155-162.DOI: 10.16265/j.cnki.issn1003-3033.2023.04.0826.
|
[12] |
BAI S M, DAI B Y, et al. An integrated model for the geohazard accident duration on a regional mountain road network using text data[J]. Sustainability, 2022, 14(19): 12429. DOI: 10.3390/su141912429.
|
[13] |
何珂, 杨顺新, 郜勇刚. 基于PCA-RF组合模型的隧道交通事故持续时间预测[J]. 交通信息与安全, 2019, 37(5): 26-32.
|
[14] |
KUANG L, YAN H, ZHU Y J, et al. Predicting duration of traffic accidents based on cost-sensitive Bayesian network and weighted K-nearest neighbor[J]. Journal of Intelligent Transportation Systems, 2019, 23(2): 161-174. DOI: 10.1080/15472450.2018.1536978.
|
[15] |
CHEN J N, TAO W J. Traffic accident duration prediction using text mining and ensemble learning on expressways[J]. Scientific Reports, 2022, 12(1): 21478. DOI: 10.1038/s41598-022-25988-4.
pmid: 36509866
|
[16] |
ZHANG Y, WANG X H. Intrusion detection for IoT based on improved genetic algorithm and deep belief network[J]. IEEE Access, 2019, 7: 31711-31722. DOI: 10.1109/ACCESS.2019.2903723.
|
[17] |
HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. DOI: 10.1162/neco.2006.18.7.1527.
pmid: 16764513
|
[18] |
TAO C X, WANG X, GAO F Y, et al. Fault diagnosis of photovoltaic array based on deep belief network optimized by genetic algorithm[J]. Chinese Journal of Electrical Engineering, 2020, 6(3): 106-114. DOI: 10.23919/CJEE.2020.000024.
|
[19] |
UPADHYA V, SASTRY P S. Learning gaussian-bernoulli RBMs using difference of convex functions optimization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(10): 5728-5738. DOI: 10.1109/TNNLS.2021.3071358.
|
[20] |
CHEN S Y, ZHENG C J. Traffic incident duration prediction based on support vector regression[C]// ICCTP 2011. Nanjing: American Society of Civil Engineers, 2011: 2412-2421. DOI: 10.1061/41186(421)241.
|
[21] |
易富君, 韩直, 邓卫. 遗传算法优化的RBF神经网络模型在公路隧道群交通事故微观预测中的应用[J]. 交通运输工程与信息学报, 2012, 10(1): 64-72. DOI: 10.3969/j.issn.1672-4747.2012.01.011.
|
[22] |
TANG J J, ZHENG L L, HAN C Y, et al. Traffic incident clearance time prediction and influencing factor analysis using extreme gradient boosting model[J]. Journal of Advanced Transportation, 2020, 2020: 6401082. DOI: 10.1155/2020/6401082.
|
[23] |
WANG P, HAO W B, JIN Y L. Fine-grainedtraffic flow prediction of various vehicle types via fusion of multisource data and deep learning approaches[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(11): 6921-6930. DOI: 10.1109/TITS.2020.2997412.
|
[24] |
马德明, 梁宏斌. 基于时空混合残差网络的事故黑点预测研究[J]. 交通运输工程与信息学报, 2020, 18(4):68-75.
|
[25] |
CHO M, PARK J, KIM S, et al. Estimation of driving direction of traffic accident vehicles for improving traffic safety[J]. Applied Sciences, 2023, 13(13): 7710. DOI: 10.3390/app13137710.
|