[1] |
BAZDAR E, SAMETI M, NASIRI F, et al. Compressed air energy storage in integrated energy systems: A review[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112701. DOI:10.1016/j.rser.2022.112701.
|
[2] |
王晓露. 火电厂热电联产机组与压缩空气储能系统热力学耦合研究[D]. 北京: 中国科学院大学, 2021.
|
[3] |
GUO H, CHEN H S, et al. Thermodynamic characteristics of a novel supercritical compressed air energy storage system[J]. Energy Conversion and Management, 2016, 115: 167-177. DOI:10.1016/j.enconman.2016.01.051.
|
[4] |
李杨楠, 张国昀, 程一步. 不同储能技术的经济性及应用前景分析[J]. 石油石化绿色低碳, 2023, 8(3): 1-8. DOI:10.3969/j.issn.2095-0942.2023.03.001.
|
[5] |
庞永超. 先进绝热压缩空气储能系统热力性能研究[D]. 北京: 华北电力大学, 2017.
|
[6] |
董舟, 王宁, 李凯, 等. 储能技术分类及市场需求分析[J]. 中国金属通报, 2019(11): 181-182. DOI:10.3969/j.issn.1672-1667.2019.11.112.
|
[7] |
吴皓文, 王军, 龚迎莉, 等. 储能技术发展现状及应用前景分析[J]. 电力学报, 2021, 36(5): 434-443. DOI:10.13357/j.dlxb.2021.052.
|
[8] |
WANG D L, LIU N N, CHEN F, et al. Progress and prospects of energy storage technology research: Based on multidimensional comparison[J]. Journal of Energy Storage, 2024, 75: 109710. DOI:10.1016/j.est.2023.109710.
|
[9] |
SAYED E, OLABI A, ALAMI A, et al. Renewable energy and energy storage systems[J]. Energies, 2023, 16(3): 1415. DOI:10.3390/en16031415.
|
[10] |
VILANOVA M R N, FLORES A T, BALESTIERI J A P. Pumped hydro storage plants: A review[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(8): 415. DOI:10.1007/s40430-020-02505-0.
|
[11] |
吴毅, 胡东帅, 王明坤, 等. 一种新型的跨临界CO2储能系统[J]. 西安交通大学学报, 2016, 50(3): 45-49. DOI:10.7652/xjtuxb201603007.
|
[12] |
ZHANG Q, LUO Z W, ZHAO Y J, et al. Performance assessment and multi-objective optimization of a novel transcritical CO2 trigeneration system for a low-grade heat resource[J]. Energy Conversion and Management, 2020, 204: 112281. DOI:10.1016/j.enconman.2019.112281.
|
[13] |
SUN E H, WANG X R, et al. Proposal of multistage mass storage process to approach isothermal heat rejection of semi-closed S-CO2 cycle[J]. Energy, 2023, 270: 126879. DOI:10.1016/j.energy.2023.126879.
|
[14] |
LIU Z, LIU Z H, YANG X Q, et al. Advanced exergy and exergoeconomic analysis of a novel liquid carbon dioxide energy storage system[J]. Energy Conversion and Management, 2020, 205: 112391. DOI:10.1016/j.enconman.2019.112391.
|
[15] |
GUO H, ZHANG Y, et al. Off-design performance and an optimal operation strategy for the multistage compression process in adiabatic compressed air energy storage systems[J]. Applied Thermal Engineering, 2019, 149: 262-274. DOI:10.1016/j.applthermaleng.2018.12.035.
|
[16] |
CHEN W, BAI J S, WANG G H, et al. First and second law analysis and operational mode optimization of the compression process for an advanced adiabatic compressed air energy storage based on the established comprehensive dynamic model[J]. Energy, 2023, 263: 125882. DOI:10.1016/j.energy.2022.125882.
|
[17] |
GUO H, ZHANG Y, et al. Off-design performance and operation strategy of expansion process in compressed air energy systems[J]. International Journal of Energy Research, 2019, 43(1): 475-490. DOI:10.1002/er.4284.
|
[18] |
WANG S X, ZHANG X L, YANG L W, et al. Experimental study of compressed air energy storage system with thermal energy storage[J]. Energy, 2016, 103: 182-191. DOI:10.1016/j.energy.2016.02.125.
|
[19] |
刘辉. 超临界压缩二氧化碳储能系统热力学特性与热经济性研究[D]. 北京: 华北电力大学, 2017. DOI:10.27140/d.cnki.ghbbu.2017.000045.
|