[1] |
张浩. 风电功率时空不确定性预测方法研究[D]. 北京: 华北电力大学, 2021.
|
[2] |
CHEN L X, WANG Y Z, XIE M N, et al. Energy and exergy analysis of two modified adiabatic compressed air energy storage (A-CAES) system for cogeneration of power and cooling on the base of volatile fluid[J]. Journal of Energy Storage, 2021, 42: 103009. DOI: 10.1016/j.est.2021.103009.
|
[3] |
XUE X D, WANG S X, ZHANG X L, et al. Thermodynamic analysis of a novel liquid air energy storage system[J]. Physics Procedia, 2015, 67: 733-738. DOI: 10.1016/j.phpro.2015.06.124.
|
[4] |
GUO H, XU Y J, CHEN H S, et al. Thermodynamic characteristics of a novel supercritical compressed air energy storage system[J]. Energy Conversion and Management, 2016, 115: 167-177. DOI: 10.1016/j.enconman.2016.01.051.
|
[5] |
吴毅, 胡东帅, 王明坤, 等. 一种新型的跨临界CO2储能系统[J]. 西安交通大学学报, 2016, 50(3): 45-49. DOI: 10.7652/xjtuxb201603007.
|
[6] |
FU L P, REN Z K, SI W Z, et al. Research progress on CO2 capture and utilization technology[J]. Journal of CO2 Utilization, 2022, 66: 102260. DOI: 10.1016/j.jcou.2022.102260.
|
[7] |
郝银萍. 跨临界压缩二氧化碳储能系统热力学特性及技术经济性研究[D]. 北京: 华北电力大学, 2021.
|
[8] |
宋飘飘. 半闭式超临界二氧化碳循环性能分析[D]. 北京: 华北电力大学, 2021.
|
[9] |
WANG M K, ZHAO P, WU Y, et al. Performance analysis of a novel energy storage system based on liquid carbon dioxide[J]. Applied Thermal Engineering, 2015, 91: 812-823. DOI: 10.1016/j.applthermaleng.2015.08.081.
|
[10] |
GUO H, XU Y J, ZHANG Y, et al. Off-design performance and an optimal operation strategy for the multistage compression process in adiabatic compressed air energy storage systems[J]. Applied Thermal Engineering, 2019, 149: 262-274. DOI: 10.1016/j.applthermaleng.2018.12.035.
|
[11] |
庞硕. 先进绝热压缩空气储能系统部件特性分析及优化设计[D]. 北京: 华北电力大学, 2019.
|
[12] |
周倩. 压缩空气储能中的蓄热技术及其经济性研究[D]. 北京: 华北电力大学, 2020.
|
[13] |
GUO H A, XU Y J, ZHANG Y, et al. Off-design performance and operation strategy of expansion process in compressed air energy systems[J]. International Journal of Energy Research, 2019, 43(1): 475-490. DOI: 10.1002/er.4284.
|
[14] |
CHEN W, BAI J S, WANG G H, et al. First and second law analysis and operational mode optimization of the compression process for an advanced adiabatic compressed air energy storage based on the established comprehensive dynamic model[J]. Energy, 2023, 263: 125882. DOI: 10.1016/j.energy.2022.125882.
|
[15] |
SZABLOWSKI L, KRAWCZYK P, BADYDA K, et al. Energy and exergy analysis of adiabatic compressed air energy storage system[J]. Energy, 2017, 138: 12-18. DOI: 10.1016/j.energy.2017.07.055.
|
[16] |
XU M J, WANG X, WANG Z H, et al. Preliminary design and performance assessment of compressed supercritical carbon dioxide energy storage system[J]. Applied Thermal Engineering, 2021, 183: 116153. DOI: 10.1016/j.applthermaleng.2020.116153.
|
[17] |
GUO H, XU Y J, ZHU Y L, et al. Thermal-mechanical coefficient analysis of adiabatic compressor and expander in compressed air energy storage systems[J]. Energy, 2022, 244: 122993. DOI: 10.1016/j.energy.2021.122993.
|
[18] |
CHEN L X, ZHANG L G, YANG H P, et al. Dynamic simulation of a re-compressed adiabatic compressed air energy storage (RA-CAES) system[J]. Energy, 2022, 261: 125351. DOI: 10.1016/j.energy.2022.125351.
|
[19] |
WANG S X, ZHANG X L, YANG L W, et al. Experimental study of compressed air energy storage system with thermal energy storage[J]. Energy, 2016, 103: 182-191. DOI: 10.1016/j.energy.2016.02.125.
|
[20] |
刘辉. 超临界压缩二氧化碳储能系统热力学特性与热经济性研究[D]. 北京: 华北电力大学, 2017.
|