|
[1] 韩宝明,
余怡然, 习喆,
等. 2023年世界城市轨道交通运营统计与分析综述[J].
都市快轨交通, 2024, 37(1):1-9.
DOI:10.3969/j.issn.1672-6073.2024.01.001.
[2] ZHENG K, ZHANG Y. Optimization of rapid rescue for metro fire based
on the metro fire engine[C]//2022 IEEE 25th International Conference on
Intelligent Transportation Systems (ITSC). 【◆◆◆Macau◆◆◆】, China. IEEE, 2022: 1795-1802. DOI:
10.1109/ITSC55140.2022.9922007.
[3] WANG J H, YAN W Y, XU H, et al. Investigation of the probability of
a safe evacuation to succeed in subway fire emergencies based on Bayesian
theory[J]. KSCE Journal of Civil Engineering, 2018, 22(3): 877-886. DOI:
10.1007/s12205-018-0620-7.
[4] YU L X, LIU F, LIU Y Q, et al. Experimental study on thermal and
smoke control using transverse ventilation in a sloping urban traffic link
tunnel fire[J]. Tunnelling and Underground Space Technology, 2018, 71: 81-93.
DOI: 10.1016/j.tust.2017.08.012.
[5] ZHAN S G, XIE J M, WONG S C, et al. Handling uncertainty in train
timetable rescheduling: A review of the literature and future research
directions[J]. Transportation Research Part E: Logistics and Transportation
Review, 2024, 183: 103429. DOI: 10.1016/j.tre.2024.103429.
[6] CACCHIANI V, HUISMAN D, KIDD M, et al. An overview of
recovery models and algorithms for real-time railway rescheduling[J].
Transportation Research Part B: Methodological, 2014, 63: 15-37. DOI:
10.1016/j.trb.2014.01.009.
[7] ZHAN S G, KROON L G, ZHAO J, et al. A rolling horizon approach to
the high speed train rescheduling problem in case of a partial segment
blockage[J]. Transportation Research Part E: Logistics and Transportation
Review, 2016, 95: 32-61. DOI: 10.1016/j.tre.2016.07.015.
[8] XU X, LI K, Yang L. Rescheduling
subway trains by a discrete event model considering[J]. Applied Mathematical
Modelling, 2015, 40(2). DOI: 10.1016/j.apm.2015.06.031
[9] LÖVÉTEI I F, LINDENMAIER L, ARADI S. Efficient real-time rail
traffic optimization: Decomposition of rerouting, reordering, and rescheduling
problems[J]. Journal of Rail Transport Planning & Management, 2025, 33:
100496. DOI: 10.1016/j.jrtpm.2024.100496.
[10] HUANG Y R, MANNINO C, YANG L X, et al. Coupling time-indexed and
big-M formulations for real-time train scheduling during metro service
disruptions[J]. Transportation Research Part B: Methodological, 2020, 133:
38-61. DOI: 10.1016/j.trb.2019.12.005.
[11] SCHETTINI T, JABALI O, MALUCELLI F. Demand-driven timetabling for a
metro corridor using a short-turning acceleration strategy[J]. Transportation
Science, 2022, 56(4): 919-937. DOI: 10.1287/trsc.2021.1118.
[12] GAO Y, KROON L, SCHMIDT M, et al. Rescheduling a metro line in an
over-crowded situation after disruptions[J]. Transportation Research Part B:
Methodological, 2016, 93: 425-449. DOI: 10.1016/j.trb.2016.08.011.
[13] ZHU Y Q, GOVERDE R M P. Railway timetable rescheduling with
flexible stopping and flexible short-turning during disruptions[J].
Transportation Research Part B: Methodological, 2019, 123: 149-181. DOI:
10.1016/j.trb.2019.02.015.
[14] GHAEMI N, CATS O, GOVERDE R M P. Macroscopic multiple-station
short-turning model in case of complete railway blockages[J]. Transportation
Research Part C: Emerging Technologies, 2018, 89: 113-132. DOI:
10.1016/j.trc.2018.02.006.
[15] PENG S R, YANG X, DING S X, et al. A dynamic rescheduling and speed
management approach for high-speed trains with uncertain time-delay[J].
Information Sciences, 2023, 632: 201-220. DOI: 10.1016/j.ins.2023.03.003.
[16] YIN J T, YANG L X, TANG T, et al. Dynamic passenger demand oriented
metro train scheduling with energy-efficiency and waiting time minimization:
Mixed-integer linear programming approaches[J]. Transportation Research Part B:
Methodological, 2017, 97: 182-213. DOI: 10.1016/j.trb.2017.01.001.
[17] ZHAN S G, WONG S C, SHANG P, et al. Integrated railway timetable
rescheduling and dynamic passenger routing during a complete blockage[J].
Transportation Research Part B: Methodological, 2021, 143: 86-123. DOI:
10.1016/j.trb.2020.11.006.
[18] ZHANG C T, GAO Y, CACCHIANI V, et al. Train rescheduling for
large-scale disruptions in a large-scale railway network[J]. Transportation
Research Part B: Methodological, 2023, 174: 102786. DOI:
10.1016/j.trb.2023.102786.
[19] PU F, YIN J T, WANG Y H, et al. Rolling stock allocation and
timetabling for urban rail transit network with multiple depots[J].
Transportation Research Record: Journal of the Transportation Research Board,
2022, 2676(11): 422-435. DOI: 10.1177/03611981221093323.
[20] YIN J T, PU F, YANG L X, et al. Integrated
optimization of rolling stock allocation and train timetables for urban rail
transit networks: A benders decomposition approach[J]. Transportation Research
Part B: Methodological, 2023, 176: 102815. DOI: 10.1016/j.trb.2023.102815.
[21] PAN H C, YANG L X, LIANG Z. Demand-oriented integration
optimization of train timetabling and rolling stock circulation planning with
flexible train compositions: A column-generation-based approach[J]. European
Journal of Operational Research, 2023, 305(1): 184-206. DOI:
10.1016/j.ejor.2022.05.039.
[22] CADARSO L, MARÍN Á, MARÓTI G. Recovery of disruptions in rapid
transit networks[J]. Transportation Research Part E: Logistics and
Transportation Review, 2013, 53: 15-33. DOI: 10.1016/j.tre.2013.01.013.
[23] SUN L S, LU H B, XU Y, et al. Fairness-oriented
train service design for urban rail transit cross-line operation[J]. Physica A:
Statistical Mechanics and its Applications, 2022, 606: 128124. DOI:
10.1016/j.physa.2022.128124.
[24] CHAI S M, YIN J T, D’ARIANO A, et al. Scheduling of coupled train
platoons for metro networks: A passenger demand-oriented approach[J].
Transportation Research Record: Journal of the Transportation Research Board,
2023, 2677(2): 1671-1689. DOI: 10.1177/03611981221109175.
[25] CHAI S M, YIN J T, D’ARIANO A, et al. Train schedule optimization
for commuter-metro networks[J]. Transportation Research Part C: Emerging
Technologies, 2023, 155: 104278. DOI: 10.1016/j.trc.2023.104278.
[26] WANG E T, YANG L X, YIN J T, et al. Passenger-oriented rolling
stock scheduling in the metro system with multiple depots: Network flow based
approaches[J]. Transportation Research Part B: Methodological, 2024, 180:
102885. DOI: 10.1016/j.trb.2024.102885.
[27] WANG Y H, ZHAO K Q, D’ARIANO A, et al. Real-time integrated train
rescheduling and rolling stock circulation planning for a metro line under
disruptions[J]. Transportation Research Part B: Methodological, 2021, 152:
87-117. DOI: 10.1016/j.trb.2021.08.003.
[28] BARRENA E, CANCA D, COELHO L C, et al. Single-line rail rapid
transit timetabling under dynamic passenger demand[J]. Transportation Research
Part B: Methodological, 2014, 70: 134-150. DOI: 10.1016/j.trb.2014.08.013.
[29] ZHENG Y J, ZHANG M X, ZHANG B. Biogeographic harmony search for
emergency air transportation[J]. Soft Computing, 2016, 20(3): 967-977. DOI:
10.1007/s00500-014-1556-6.
[30] YUAN J W, GAO Y, LI S K, et al. Integrated optimization of train
timetable, rolling stock assignment and short-turning strategy for a metro
line[J]. European Journal of Operational Research, 2022, 301(3): 855-874. DOI:
10.1016/j.ejor.2021.11.019.
[31] LAMORGESE L, MANNINO C. An exact decomposition approach for the
real-time train dispatching problem[J]. Operations Research, 2015, 63(1):
48-64. DOI: 10.1287/opre.2014.1327. |