|
[1] PETROVIĆ M, FIKET Ž.
Environmental damage caused by coal combustion residue disposal: A critical
review of risk assessment methodologies[J]. Chemosphere, 2022, 299: 134410.
DOI: 10.1016/j.chemosphere.2022.134410.
[2] 刘征涛. 持久性有机污染物的主要特征和研究进展[J]. 环境科学研究, 2005, 18(3): 93-102.
DOI: 10.13198/j.res.2005.03.95.liuzht.022.
[3] 刘惠永, 孙志宽, 孙俊民, 等. 燃煤排放正构烷烃类有机化合物的特征与形成演化机理研究[J]. 热能动力工程, 2003, 18(1): 35-38.
[4] WU X L, LIU
W B, GAO H F, et al. Coordinated effects of air pollution control devices on PAH
emissions in coal-fired power plants and industrial boilers[J]. Science of The
Total Environment, 2021, 756: 144063. DOI: 10.1016/j.scitotenv.2020.144063.
[5] XU J Y, LYU Y, ZHUO J K, et al.
Formation and emission characteristics of VOCs from a coal-fired power
plant[J]. Chinese Journal of Chemical Engineering, 2021, 35: 256-264. DOI:
10.1016/j.cjche.2021.02.015.
[6] WANG R W, YOUSAF B, SUN R Y, et
al. Emission characterization and δ13C values of parent PAHs and
nitro-PAHs in size-segregated particulate matters from coal-fired power
plants[J]. Journal of Hazardous Materials, 2016, 318: 487-496. DOI:
10.1016/j.jhazmat.2016.07.030.
[7] MASTRAL A M, CALLÉN M S, GARCÍA
T. Polycyclic aromatic hydrocarbons and organic matter associated to
particulate matter emitted from atmospheric fluidized bed coal combustion[J].
Environmental Science & Technology, 1999, 33(18): 3177-3184. DOI: 10.1021/es990241a.
[8] HAYASHI J, KAWAKAMI T, TANIGUCHI
T, et al. Control of molecular composition of tar by secondary reaction in
fluidized-bed pyrolysis of a subbituminous coal[J]. Energy & Fuels, 1993,
7(1): 57-66. DOI: 10.1021/ef00037a011.
[9] WORNAT M J, SAROFIM A F, LONGWELL
J P. Changes in the degree of substitution of polycyclic aromatic compounds
from pyrolysis of a high-volatile bituminous coal[J]. Energy &
Fuels, 1987, 1(5): 431-437. DOI: 10.1021/ef00005a010.
[10] LU C M, DAT
N D, LIEN C K, et al. Characteristics of fine particulate matter and polycyclic
aromatic hydrocarbons emitted from coal combustion processes[J]. Energy
& Fuels, 2019, 33(10): 10247-10254. DOI: 10.1021/acs.energyfuels.9b02201.
[11] JIN R, LIU
G R, JIANG X X, et al. Profiles, sources and potential exposures of parent,
chlorinated and brominated polycyclic aromatic hydrocarbons in haze associated
atmosphere[J]. Science of The Total Environment, 2017, 593: 390-398. DOI:
10.1016/j.scitotenv.2017.03.134.
[12] PERGAL M M, TEŠIĆ Ž L, POPOVIĆ A
R. Polycyclic aromatic hydrocarbons: Temperature driven formation and behavior
during coal combustion in a coal-fired power plant[J]. Energy &
Fuels, 2013, 27(10): 6273-6278. DOI: 10.1021/ef401467z.
[13] ZHOU C, XI
W, YANG L, et al. Chlorine emission characteristics and control status of coal-fired
units[J]. Energy Reports, 2022, 8: 51-58. DOI: 10.1016/j.egyr.2021.11.129.
[14] 倪秀峰, 王儒威, 蔡飞旋, 等. 燃煤电厂和垃圾焚烧电厂燃烧产物中卤代多环芳烃的赋存特征和毒性风险[J]. 环境科学, 2021, 42(4): 1660-1667. DOI:
10.13227/j.hjkx.202007298.
[15] JAKUBEK T,
KASPERA W, LEGUTKO P, et al. How to efficiently promote transition metal oxides by alkali
towards catalytic soot oxidation[J]. Topics in Catalysis, 2016, 59(10):
1083-1089. DOI: 10.1007/s11244-016-0595-x.
[16] JIA H Q, XING Y, ZHANG L G, et
al. Progress of catalytic oxidation of typical chlorined volatile organic
compounds (CVOCs): A review[J]. Science of The Total Environment, 2023, 865:
161063. DOI: 10.1016/j.scitotenv.2022.161063.
[17] SONG Z J, YU S X, LIU H, et al.
Carbon/chlorinate deposition on MnOx-CeO2catalyst in chlorobenzene combustion: The effect of SCR flue gas[J]. Chemical
Engineering Journal, 2022, 433: 133552. DOI: 10.1016/j.cej.2021.133552.
[18] LIN F W, XIANG L, ZHANG Z M, et
al. Comprehensive review on catalytic degradation of Cl-VOCs under the
practical application conditions[J]. Critical Reviews in Environmental Science
and Technology, 2022, 52(3): 311-355. DOI: 10.1080/10643389.2020.1818490.
[19] 孟柯, 杨甲甲, 樊芸, 等. 烟气中氯代芳构化合物催化氧化的研究进展[J]. 环境化学, 2024, 43(10):3434-3447. DOI:10.7524/j.issn.0254-6108.2023042402.
[20] WU Y J, XU
Z Y, HUANG X L, et al. A typical 300 MW ultralow emission coal-fired power plant:
Source, distribution, emission, and control of polycyclic aromatic
hydrocarbons[J]. Fuel, 2022, 326: 125052. DOI: 10.1016/j.fuel.2022.125052.
[21] XU Y, HU J
L, YING Q, et al. Current and future emissions of primary pollutants from coal-fired power
plants in Shaanxi, China[J]. Science of The Total Environment, 2017, 595:
505-514. DOI: 10.1016/j.scitotenv.2017.03.267.
[22] CANLI O, GÜZEL B, ÖKTEM OLGUN E,
et al. Evaluation of hexabromocyclododecane (HBCD), polybrominated
dibenzo-p-dioxins/furans (PBDD/Fs) and polychlorinated dibenzo-p-dioxins/furans
(PCDD/Fs) outflows during the destruction of HBCD wastes in a hazardous waste
incinerator[J]. Science of The Total Environment, 2024, 927: 172317. DOI:
10.1016/j.scitotenv.2024.172317.
[23] ZHONG H, LYU H H, WANG Z Q, et
al. Application of dissimilatory iron-reducing bacteria for the remediation of
soil and water polluted with chlorinated organic compounds: Progress,
mechanisms, and directions[J]. Chemosphere, 2024, 352: 141505. DOI: 10.1016/j.chemosphere.2024.141505.
[24] HUANG Y J, LIN B S, LEE C L, et
al. Enrichment behavior of contemporary PAHs and legacy PCBs at the sea-surface
microlayer in harbor water[J]. Chemosphere, 2020, 245: 125647. DOI:
10.1016/j.chemosphere.2019.125647.
[25] 赵梓舒, 左欣, 赵丹, 等. VOCs末端治理技术进展及在燃煤电站烟气净化的应用思考[J]. 洁净煤技术, 2022, 28(2): 54-66. DOI:
10.13226/j.issn.1006-6772.VOCs21122001.
[26] BOSTROM CE,
GERDE P, HANBERG A, et al. Cancer risk assessment, indicators, and guidelines for polycyclic
aromatic hydrocarbons in the ambient air[J]. Environmental Health Perspectives,
2002, 110 (suppl3): 451-489.
http://ehpnet1.niehs.nih.gov/docs/2002/suppl-3/451-489bostrom/abstract.html.
[27] CHRISTIANSEN J V, FELDTHUS A,
CARLSEN L. Flash pyrolysis of coals. Temperature-dependent product
distribution[J]. Journal of Analytical and Applied Pyrolysis, 1995, 32: 51-63. DOI:
10.1016/0165-2370(94)00826-M.
[28] LI X,
MATUSCHEK G, HERRERA M, et al. Investigation of pyrolysis of Chinese coals using thermal
analysis/mass spectrometry[J]. Journal of Thermal Analysis and Calorimetry,
2003, 71(2): 601-612. DOI: 10.1023/A:1022820329954.
[29] 陈逸峰. 典型低阶煤热解过程有机结构演化及含氮组分反应机理[D]. 武汉: 华中科技大学, 2023. DOI:
10.27157/d.cnki.ghzku.2023.004976.
[30] 曹景沛, 姚乃瑜, 庞新博, 等. 煤热解研究进展及其发展历程[J]. 化工进展, 2024, 43(7): 3620-3636. DOI:
10.16085/j.issn.1000-6613.2024-0753.
[31] OHURA T,
FUJIMA S, AMAGAI T, et al. Chlorinated polycyclic aromatic hydrocarbons in the
atmosphere: Seasonal levels, gas-particle partitioning, and origin[J].
Environmental Science & Technology, 2008, 42(9): 3296-3302. DOI:
10.1021/es703068n.
[32] YAN J H,
YOU X F, LI X D, et al. Performance of PAHs emission from bituminous coal
combustion[J]. Journal of Zhejiang University: Science A, 2004, 5(12):
1554-1564. DOI: 10.1631/jzus.2004.1554.
[33] 武小琳. 典型热过程中POPs排放特征及生成机制研究[D]. 北京:中国科学院大学,2021.
[34] BABUSHOK V I, TSANG W. Gas-phase
mechanism for dioxin formation[J]. Chemosphere, 2003, 51(10): 1023-1029. DOI:
10.1016/S0045-6535(02)00716-6.
[35] 魏新鲜, 钱枫, 孙晓, 等. 燃烧条件对燃煤过程多环芳烃生成特征的影响[J]. 现代化工, 2017, 37(2): 90-94. DOI:
10.16606/j.cnki.issn0253-4320.2017.02.020.
[36] PANDELOVA M, LENOIR D, SCHRAMM K
W. Correlation between PCDD/F, PCB and PCBz in coal/waste combustion. Influence
of various inhibitors[J]. Chemosphere, 2006, 62(7): 1196-1205. DOI:
10.1016/j.chemosphere.2005.07.068.
[37] JIA L Y, WENG J J, WANG Y, et
al. Online analysis of volatile products from bituminous coal pyrolysis with
synchrotron vacuum ultraviolet photoionization mass spectrometry[J]. Energy
& Fuels, 2013, 27(2): 694-701. DOI: 10.1021/ef301670y.
[38] MASTRAL A M, CALLÉN M S, GARCIA
T. Toxic organic emissions from coal combustion[J]. Fuel Processing Technology,
2000, 67(1): 1-10. DOI: 10.1016/S0378-3820(00)00088-6.
[39] LEDESMA E B, KALISH M A, NELSON
P F, et al. Formation and fate of PAH during the pyrolysis and fuel-rich
combustion of coal primary tar[J]. Fuel, 2000, 79(14): 1801-1814. DOI:
10.1016/s0016-2361(00)00044-2.
[40] 赵煊赫, 李珊, 吴鹏, 等. 韩家湾煤及其热解半焦中多环芳烃分布特征研究[J]. 煤炭转化, 2023, 46(2): 1-9. DOI:
10.19726/j.cnki.ebcc.202302001.
[41] 李津津, 陈扉然, 马修卫, 等. 燃煤有机污染物排放及其控制技术研究展望[J]. 化工进展, 2019, 38(12): 5539-5547.
DOI: 10.16085/j.issn.1000-6613.2019-0380.
[42] CHEN T, LI
X D, YAN J H, et al. Polychlorinated biphenyls emission from a medical waste
incinerator in China[J]. Journal of Hazardous Materials, 2009, 172(2/3):
1339-1343. DOI: 10.1016/j.jhazmat.2009.07.147.
[43] KIM M S, LEE S, PARK M, et al.
Region-specific characterization and ecotoxicity assessment of PAH compounds in
winter PM2.5from three capital cities in Northeast Asia[J]. Journal
of Hazardous Materials, 2025, 494: 138536. DOI: 10.1016/j.jhazmat.2025.138536.
[44] JI K L, SUN B, ZHOU H J, et al.
Impacts of COVID-19 lockdown on PM2.5-bound polycyclic aromatic
hydrocarbons in Hohhot, Northern China: Characteristics, sources, and
source-specific health risks[J]. Environmental Health, 2025, 24(1): 5. DOI:
10.1186/s12940-025-01161-y.
[45] CHEN H R, SHANG N N, ZHAO C, et
al. Factors influencing particle-water partition and ecological risks of
polycyclic aromatic hydrocarbons in the Yangtze River mainstream[J]. Environmental
Pollution, 2025, 379: 126523. DOI: 10.1016/j.envpol.2025.126523.
[46] DUAN X L,
LI J K, LI Y J, et al. Accumulation of typical persistent organic pollutants and
heavy metals in bioretention facilities: Distribution, risk assessment, and
microbial community impact[J]. Environmental Research, 2024, 252: 119107. DOI:
10.1016/j.envres.2024.119107.
[47] XIE J Q, TAO L, WU Q, et al.
Environmental profile, distributions and potential sources of halogenated
polycyclic aromatic hydrocarbons[J]. Journal of Hazardous Materials, 2021, 419:
126164. DOI: 10.1016/j.jhazmat.2021.126164.
[48] JIN R, LIU G R, ZHENG M H, et
al. Secondary copper smelters as sources of chlorinated and brominated
polycyclic aromatic hydrocarbons[J]. Environmental Science & Technology,
2017, 51(14): 7945-7953. DOI: 10.1021/acs.est.7b02031.
[49] JIN R, ZHENG M H, LAMMEL G, et
al. Chlorinated and brominated polycyclic aromatic hydrocarbons: Sources,
formation mechanisms, and occurrence in the environment[J]. Progress in Energy
and Combustion Science, 2020, 76: 100803. DOI: 10.1016/j.pecs.2019.100803.
[50] HUANG C, XU
X, WANG D H, et al. The aryl hydrocarbon receptor (AhR) activity and DNA-damaging effects of
chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs)[J]. Chemosphere, 2018,
211: 640-647. DOI: 10.1016/j.chemosphere.2018.07.087.
[51] GUO L, ZHANG X Y, LUO D Y, et
al. Population-level effects of polychlorinated biphenyl (PCB) exposure on
highly vulnerable Indo-Pacific humpback dolphins from their largest habitat[J].
Environmental Pollution, 2021, 286: 117544. DOI: 10.1016/j.envpol.2021.117544.
[52] JIANG S, WAN M M, LIN K, et al.
Spatiotemporal distribution, source analysis and ecological risk assessment of
polychlorinated biphenyls (PCBs) in the Bohai Bay, China[J]. Marine Pollution
Bulletin, 2024, 198: 115780. DOI: 10.1016/j.marpolbul.2023.115780.
[53] 官贞珍, 潘卫国, 郭瑞堂, 等. 国内外燃煤电厂二恶英排放及控制[J]. 燃烧科学与技术, 2020, 26(5): 423-429.
[54] SU F C, LI Y, XU Q X, et al.High resolution residential emission inventory and relationships
between urban residential emissions and incomes in megacity Zhengzhou,
China[J]. Environmental Pollution, 2025, 380: 126553. DOI:
10.1016/j.envpol.2025.126553.
[55] HE W C, FEI X W, GUO H, et al.
Ecological risk assessment and source identification of potential toxic
elements in farmland soil of Nanyang basin, China[J]. Toxics, 2025, 13(5): 342.
DOI: 10.3390/toxics13050342.
[56] 赵楚轩, 欧阳成政, 李英明, 等. 卤代多环芳烃研究进展:来源、毒性、环境概况和分析方法[J]. 分析测试学报, 2024, 43(8):1154-1165.
DOI:10.12452/j.fxcsxb.24052774.
[57] IGHALO J O, YAP P S, IWUOZOR K
O, et al. Adsorption of persistent organic pollutants (POPs) from the aqueous
environment by nano-adsorbents: A review[J]. Environmental Research, 2022, 212:
113123. DOI: 10.1016/j.envres.2022.113123.
[58] WU K Q, YAO Y Y, MENG
Y H, et al. Long-term atmosphere surveillance (2016–2021) of PM2.5-bound
polycyclic aromatic hydrocarbons and health risk assessment in Yangtze River
Delta, China[J]. Exposure and Health, 2024, 16(2): 489-502. DOI:
10.1007/s12403-023-00572-x. |