[1] |
SU Z X, ZHANG M L, XU P H, et al. Opportunities and strategies for multigrade waste heat utilization in various industries: A recent review[J]. Energy Conversion and Management, 2021, 229: 113769. DOI: 10.1016/j.enconman.2020.113769.
|
[2] |
LIU B, JIA M, LIU Y. Estimation of industrial waste heat recovery potential in China: Based on energy consumption[J]. Applied Thermal Engineering, 2024, 236: 121513.
|
[3] |
崔展博, 岳悦. 新型高效除尘大折流挡板余热锅炉在高尘泥烟气余热回收中的应用[J]. 辽宁化工, 2024, 53: 754-757.
|
[4] |
SONG S K, AI H, ZHU W T, et al. Carbon aerogel based composite phase change material derived from kapok fiber: Exceptional microwave absorbility and efficient solar/magnetic to thermal energy storage performance[J]. Composites Part B: Engineering, 2021, 226: 109330. DOI: 10.1016/j.compositesb.2021.109330.
|
[5] |
ZHANG S, FENG D L, SHI L, et al. A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110127. DOI: 10.1016/j.rser.2020.110127.
|
[6] |
DESAI F, SUNKU PRASAD J, MUTHUKUMAR P, et al. Thermochemical energy storage system for cooling and process heating applications: A review[J]. Energy Conversion and Management, 2021, 229: 113617. DOI: 10.1016/j.enconman.2020.113617.
|
[7] |
KANT K, PITCHUMANI R. Advances and opportunities in thermochemical heat storage systems for buildings applications[J]. Applied Energy, 2022, 321: 119299. DOI: 10.1016/j.apenergy.2022.119299.
|
[8] |
DESAGE L, MCCABE E, VIEIRA A P, et al. Thermochemical batteries using metal carbonates: A review of heat storage and extraction[J]. Journal of Energy Storage, 2023, 71: 107901. DOI: 10.1016/j.est.2023.107901.
|
[9] |
ATA U R, ZHAO T Y, ZAHIR S M, et al. Nanoengineering of MgSO4 nanohybrid on MXene substrate for efficient thermochemical heat storage material[J]. Applied Energy, 2023, 332: 120549.
|
[10] |
LI T X, WANG R Z, YAN T, et al. Integrated energy storage and energy upgrade, combined cooling and heating supply, and waste heat recovery with solid-gas thermochemical sorption heat transformer[J]. International Journal of Heat and Mass Transfer, 2014, 76: 237-246. DOI: 10.1016/j.ijheatmasstransfer.2014.04.046.
|
[11] |
GAO P, WEI X Y, WANG L W, et al. Compression-assisted decomposition thermochemical sorption energy storage system for deep engine exhaust waste heat recovery[J]. Energy, 2022, 244: 123215. DOI: 10.1016/j.energy.2022.123215.
|
[12] |
MICHEL B, DUFOUR N, BÖRTLEIN C, et al. First experimental characterization of CaCl2 coated heat exchanger for thermochemical heat transformer applications in industrial waste heat recovery[J]. Applied Thermal Engineering, 2023, 227: 120400. DOI: 10.1016/j.applthermaleng.2023.120400.
|
[13] |
PASHCHENKO D. A heat recovery rate of the thermochemical waste-heat recuperation systems based on experimental prediction[J]. Energy, 2020, 198: 117395. DOI: 10.1016/j.energy.2020.117395.
|
[14] |
KALAPALA L, DEVANURI J K. Effect of orientation on thermal performance of a latent heat storage system equipped with annular fins: An experimental and numerical investigation[J]. Applied Thermal Engineering, 2021, 183: 116244. DOI: 10.1016/j.applthermaleng.2020.116244.
|
[15] |
PIRASACI T. Investigation of phase state and heat storage form of the phase change material (PCM) layer integrated into the exterior walls of the residential-apartment during heating season[J]. Energy, 2020, 207: 118176. DOI: 10.1016/j.energy.2020.118176.
|
[16] |
CHRIAA I, KARKRI M, TRIGUI A, et al. The performances of expanded graphite on the phase change materials composites for thermal energy storage[J]. Polymer, 2021, 212: 123128. DOI: 10.1016/j.polymer.2020.123128.
|
[17] |
ANDRÉ L, ABANADES S. Recent advances in thermochemical energy storage via solid-gas reversible reactions at high temperature[J]. Energies, 2020, 13(22): 5859. DOI: 10.3390/en13225859.
|
[18] |
GEDIZ ILIS G, DEMIR H, MOBEDI M, et al. A new adsorbent bed design: Optimization of geometric parameters and metal additive for the performance improvement[J]. Applied Thermal Engineering, 2019, 162: 114270. DOI: 10.1016/j.applthermaleng.2019.114270.
|
[19] |
GAEINI M, SHAIK S A, RINDT C C M. Characterization of potassium carbonate salt hydrate for thermochemical energy storage in buildings[J]. Energy and Buildings, 2019, 196: 178-193. DOI: 10.1016/j.enbuild.2019.05.029.
|
[20] |
NEVEU P, CASTAING-LASVIGNOTTES J. Development of a numerical sizing tool for a solid-gas thermochemical transformer:I. Impact of the microscopic process on the dynamic behaviour of a solid-gas reactor[J]. Applied Thermal Engineering, 1997, 17(6): 501-518. DOI: 10.1016/s1359-4311(96)00065-8.
|
[21] |
LELE A F, KUZNIK F, RAMMELBERG H U, et al. Thermal decomposition kinetic of salt hydrates for heat storage systems[J]. Applied Energy, 2015, 154: 447-458. DOI: 10.1016/j.apenergy.2015.02.011.
|
[22] |
RAMMELBERG H U, SCHMIDT T, RUCK W. Hydration and dehydration of salt hydrates and hydroxides for thermal energy storage-kinetics and energy release[J]. Energy Procedia, 2012, 30: 362-369. DOI: 10.1016/j.egypro.2012.11.043.
|