[1] |
刘丽君, 黄张婷, 孟赐福, 等. 中国不同生态系统土壤硅的研究进展[J]. 土壤学报, 2021, 58(1): 31-41. DOI: 10.11766/trxb202005310409.
|
[2] |
SCHALLER J, TURNER B L, WEISSFLOG A, et al. Silicon in tropical forests: Large variation across soils and leaves suggests ecological significance[J]. Biogeochemistry, 2018, 140(2): 161-174. DOI: 10.1007/s10533-018-0483-5.
|
[3] |
YANAI J, NOGUCHI N, MIYAMARU N, et al. Evaluation of available silicate content and its determining factors in the soils of sugarcane fields in Okinawa, Japan[J]. Japanese Journal of Soil Science and Plant Nutrition, 2019, 90(1): 13-21.DOI: 10.20710/dojo.90.1_13.
|
[4] |
CORNELIS J T, TITEUX H, RANGER J, et al. Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species[J]. Plant and Soil, 2011, 342(1): 369-378. DOI: 10.1007/s11104-010-0702-x.
|
[5] |
杨功旭, 姚政权, 冯晗, 等. 北极东西伯利亚陆架表层沉积生物硅分布特征及环境意义[J]. 矿物岩石地球化学通报, 2023, 42(4): 717-727. DOI: 10.19658/j.issn.1007-2802.2023.42.105.
|
[6] |
WANG L J, SHENG M Y. Phytolith occluded organic carbon in Fagopyrum (Polygonaceae) plants: Insights on the carbon sink potential of cultivated buckwheat planting[J]. Frontiers in Plant Science, 2022, 13: 1014980. DOI: 10.3389/fpls.2022.1014980.
|
[7] |
STRUYF E, VAN DAMME S, GRIBSHOLT B, et al. Biogenic silica in tidal freshwater marsh sediments and vegetation (Schelde estuary, Belgium)[J]. Marine Ecology Progress Series, 2005, 303: 51-60. DOI: 10.3354/meps303051.
|
[8] |
LI B L, SONG Z L, WANG H L, et al. Phytolith carbon sequestration in bamboos of different ecotypes: A case study in China[J]. Chinese Science Bulletin, 2014, 59(34): 4816-4822. DOI: 10.1007/s11434-014-0474-4.
|
[9] |
SHEPARD C, SAPP B, RAMSEY R C. Silicon fractionation offragipan and non-fragipan horizons in the Central United States[J]. Biogeochemistry, 2023, 162(3): 409-426. DOI: 10.1007/s10533-023-01013-2.
|
[10] |
赵送来, 宋照亮, 姜培坤, 等. 西天目集约经营雷竹林土壤硅存在形态与植物有效性研究[J]. 土壤学报, 2012, 49(2): 331-338.
|
[11] |
MAKABE S, KAKUDA K I, SASAKI Y, et al. Relationship between mineral composition or soil texture and available silicon in alluvial paddy soils on the Shounai Plain, Japan[J]. Soil Science and Plant Nutrition, 2009, 55(2): 300-308. DOI: 10.1111/j.1747-0765.2008.00352.x.
|
[12] |
KLOTZBÜCHER T, LEUTHER F, MARXEN A, et al. Forms and fluxes of potential plant-available silicon in irrigated lowland rice production (Laguna, the Philippines)[J]. Plant and Soil, 2015, 393(1): 177-191. DOI: 10.1007/s11104-015-2480-y.
|
[13] |
KLOTZBÜCHER T, MARXEN A, JAHN R, et al. Silicon cycle in rice paddy fields: Insights provided by relations between silicon forms intopsoils and plant silicon uptake[J]. Nutrient Cycling in Agroecosystems, 2016, 105(2): 157-168. DOI: 10.1007/s10705-016-9782-1.
|
[14] |
杜书栋, 白军红, 贾佳, 等. 黄河三角洲芦苇湿地土壤有机碳储量沿盐分梯度的变化特征[J]. 环境科学学报, 2022, 42(1): 80-87. DOI: 10.13671/j.hjkxxb.2021.0520.
|
[15] |
赵海晓, 高永超, 赵庆庆, 等. 不同水文条件下黄河三角洲湿地土壤溶解性有机碳的分布特征[J]. 北京师范大学学报(自然科学版), 2021, 57(1): 51-58. DOI: 10.12202/j.0476-0301.2020431.
|
[16] |
STRUYF E, CONLEY D J. Silica: An essential nutrient in wetland biogeochemistry[J]. Frontiers in Ecology and the Environment, 2009, 7(2): 88-94. DOI: 10.1890/070126.
|
[17] |
邱思婷, 米慧珊, 高会, 等. 闽江河口湿地不同植被带土壤全硅的含量及分布特征[J]. 生态学报, 2020, 40(22): 8306-8314. DOI: 10.5846/stxb201911272578.
|
[18] |
ZHAO X W, ZHANG X D, LI Z M, et al. Silicon fractionations at the margin of a coastal wetland and its response to sea level rise[J]. Geoderma, 2023, 437: 116602. DOI: 10.1016/j.geoderma.2023.116602.
|
[19] |
李家书, 谢振翅, 胡定金, 等. 湖北省土壤有效硅含量分布[J]. 热带亚热带土壤科学, 1997, 6(3): 176-181. DOI: 10.16258/j.cnki.1674-5906.1997.03.005.
|
[20] |
何冬梅, 陈逸飞, 苏仪, 等. 郭岩山不同海拔天然栲树林土壤硅形态特征[J]. 林业科学研究, 2023, 36(2): 153-160. DOI: 10.12403/j.1001-1498.20220460.
|