Shandong Science ›› 2024, Vol. 37 ›› Issue (2): 85-96.doi: 10.3976/j.issn.1002-4026.20230179
• Traffic and Transportation • Previous Articles Next Articles
ZHANG Duyu(), WU Jianjun(
), YANG Xin, MA Zhi’ao, ZHU Tianlei
Received:
2023-12-25
Online:
2024-04-20
Published:
2024-04-09
CLC Number:
ZHANG Duyu, WU Jianjun, YANG Xin, MA Zhi’ao, ZHU Tianlei. Research progress on cascading failures in complex networks[J].Shandong Science, 2024, 37(2): 85-96.
Table 1
Mechanisms, definitions, and characteristics of a cascading failure"
发生机理 | 机理定义 | 机理特点 |
---|---|---|
网络拓扑结构 | 复杂网络通常具有复杂的拓扑结构,包括小世界网络、无标度网络等。这些网络结构具有高度的连通性和鲁棒性,但也存在脆弱性。当一个节点或边故障时,其相邻节点或连边可能受到影响,从而引发级联失效 | 网络拓扑结构复杂,具有高度的连通性和鲁棒性,但也存在脆弱性,容易引发级联失效[ |
动态耦合和 反馈效应 | 复杂网络中的节点和连边通常相互耦合,并且存在着反馈效应。当一个节点或边故障时,其故障信息可能通过网络传播并影响其他节点。同时,其他节点的响应和调整可能会反过来影响故障节点,形成正反馈循环,导致级联失效的扩散 | 节点和连边相互耦合,存在反馈效应,容易形成正反馈循环,导致级联失效的扩散[ |
网络动力学 和系统失衡 | 复杂网络中的节点和连边通常具有自适应和动态调整的特性。当一个节点或连边故障时,它可能会破坏网络的平衡状态,引发系统的失衡。失衡状态可能导致其他节点或连边的过载或不稳定,从而引发级联失效 | 节点和连边具有自适应和动态调整的特性,故障可能会破坏网络平衡状态,引发系统失衡,导致级联失效[ |
[1] |
BARABASI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512. DOI: 10.1126/science.286.5439.509.
pmid: 10521342 |
[2] | WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393: 440-442. DOI: 10.1038/30918. |
[3] |
GIRVAN M, NEWMAN M E J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 7821-7826. DOI: 10.1073/pnas.122653799.
pmid: 12060727 |
[4] | 曹一家, 陈晓刚, 孙可. 基于复杂网络理论的大型电力系统脆弱线路辨识[J]. 电力自动化设备, 2006, 26(12): 1-5. DOI: 10.3969/j.issn.1006-6047.2006.12.001. |
[5] | 吴建军, 李树彬. 基于复杂网络的城市交通系统复杂性概述[J]. 山东科学, 2009, 22(4): 68-73. |
[6] | 吴晋峰, 任瑞萍, 韩立宁, 等. 中国航空国际网络结构特征及其对入境旅游的影响[J]. 经济地理, 2012, 32(5): 147-152. DOI: 10.15957/j.cnki.jjdl.2012.05.025. |
[7] |
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. DOI: 10.1126/science.1127647.
pmid: 16873662 |
[8] | 韩利文, 陈善军, 董榕, 等. 网络药理学在中药复杂作用模式研究中的应用进展[J]. 山东科学, 2021, 34(6): 22-31. DOI: 10.3976/j.issn.1002-4026.2021.06.004. |
[9] | SUN H J, ZHAO H, WU JJ. A robust matching model of capacity to defense cascading failure on complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2008, 387(25): 6431-6435. DOI: 10.1016/j.physa.2008.07.028. |
[10] | MASSEY G W. The impact of installing power factor improvement capacitors: an overview and case study[C]// Proceedings of Rural Electric Power Conference. Fort Worth, TX, USA. IEEE, 2002: C4. DOI: 10.1109/REPCON.1996.495245. |
[11] | WU J J, GAO Z Y, SUN H J, et al. Congestion in different topologies of traffic networks[J]. Europhysics Letters, 2006, 74(3): 560-566. DOI: 10.1209/epl/i2005-10551-x. |
[12] | LI D H, WANG Q, ZHANG X, et al. Predicting the cascading failure propagation path in complex networks based on attention-LSTM neural networks[C]// 2023 IEEE International Symposium on Circuits and Systems (ISCAS). Monterey: IEEE, 2023: 1-4. DOI: 10.1109/ISCAS46773.2023.10181599. |
[13] | JONES D T, KNOPMAN D S, GUNTER J L, et al. Cascading network failure across the Alzheimer’s disease spectrum[J]. Brain, 2016, 139(2): 547-562. DOI: 10.1093/brain/awv338. |
[14] | 高自友, 吴建军. 出行者博弈、 网络结构与城市交通系统复杂性[J]. 复杂系统与复杂性科学, 2010, 7(4): 55-64. DOI: 10.13306/j.1672-3813.2010.04.006. |
[15] | REIS S D S, HU Y Q, BABINO A, et al. Avoiding catastrophic failure in correlated networks of networks[J]. Nature Physics, 2014, 10: 762-767. DOI: 10.1038/nphys3081. |
[16] | REN W D, WU J J, ZHANG X, et al. A stochastic model of cascading failure dynamics in communication networks[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(5): 632-636. DOI: 10.1109/TCSII.2018.2822049. |
[17] | CUMELLES J, LORDAN O, SALLAN J M. Cascading failures in airport networks[J]. Journal of Air Transport Management, 2021, 92: 102026. DOI: 10.1016/j.jairtraman.2021.102026. |
[18] | 陈志龙, 郭平, 蒋银华, 等. 计算机网络级联失效建模与分析[J]. 后勤工程学院学报, 2012, 28(4): 85-90. DOI: 10.3969/j.issn.1672-7843.2012.04.015. |
[19] | 吴杏, 曾康铭. 基于熵方法的计算机网络脆弱性检测和优化[J]. 微电子学与计算机, 2016, 33(7): 98-101. DOI: 10.19304/j.cnki.issn1000-7180.2016.07.021. |
[20] | 黄英艺, 金淳. 物流基础设施网络级联失效下的抗毁性分析[J]. 控制与决策, 2014, 29(9):1711-1714. |
[21] | LIU H R, DONG M R, YIN R R, et al. Cascading failure in the wireless sensor scale-free networks[J]. Chinese Physics B, 2015, 24(5): 050506. DOI: 10.1088/1674-1056/24/5/050506. |
[22] | DAVID A E, GJORGIEV B, SANSAVINI G. Quantitative comparison of cascading failure models for risk-based decision making in power systems[J]. Reliability Engineering & System Safety, 2020, 198: 106877. DOI: 10.1016/j.ress.2020.106877. |
[23] | YI C Q, BAO Y Y, JIANG J C, et al. Mitigation strategy against cascading failures on social networks[J]. China Communications, 2014, 11(8): 37-46. DOI: 10.1109/CC.2014.6911086. |
[24] | XU J, WANG X F. Cascading failures in scale-free coupled map lattices[C]// 2005 IEEE International Symposium on Circuits and Systems (ISCAS). Kobe: IEEE, 2005: 3395-3398. DOI: 10.1109/ISCAS.2005.1465357. |
[25] | ZHANG L, XU M, WANG S A. Quantifying bus route service disruptions under interdependent cascading failures of a multimodal public transit system based on an improved coupled map lattice model[J]. Reliability Engineering & System Safety, 2023, 235: 109250. DOI: 10.1016/j.ress.2023.109250. |
[26] | MOTTER A E, LAI Y C. Cascade-based attacks on complex networks[J]. Physical Review E, 2002, 66(6): 065102. DOI: 10.1103/physreve.66.065102. |
[27] | HOLME P, KIM B J. Vertex overload breakdown in evolving networks[J]. Physical Review E, 2002, 65(6): 066109. DOI: 10.1103/physreve.65.066109. |
[28] | MORENO Y, PASTOR-SATORRAS R, VÁZQUEZ A, et al. Critical load and congestion instabilities in scale-free networks[J]. Europhysics Letters, 2003, 62(2): 292-298. DOI: 10.1209/epl/i2003-00140-7. |
[29] | CRUCITTI P, LATORA V, MARCHIORI M. Model for cascading failures in complex networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 69(4Pt 2): 045104. DOI: 10.1103/PhysRevE.69.045104. |
[30] |
BAK P, TANG C, WIESENFELD K. Self-organized criticality: an explanation of the 1/f noise[J]. Physical Review Letters, 1987, 59(4): 381-384. DOI: 10.1103/PhysRevLett.59.381.
pmid: 10035754 |
[31] | 张晓莉, 严广乐. 基于沙堆模型的股市脆性[J]. 哈尔滨工业大学学报, 2009, 41(10): 269-271. DOI: 10.3321/j.issn:0367-6234.2009.10.060. |
[32] | 姚令侃, 黄艺丹, 杨庆华. 地震触发崩塌滑坡自组织临界性研究[J]. 四川大学学报(工程科学版), 2010, 42(5): 33-43. DOI: 10.15961/j.jsuese.2010.05.012. |
[33] | DOBSON I, CARRERAS B A, NEWMAN D E. A probabilistic loading-dependent model of cascading failure and possible implications for blackouts[C]// 36th Annual Hawaii International Conference on System Sciences, 2003. Proceedings of the. Big Island: IEEE, 2003: 10. DOI: 10.1109/HICSS.2003.1173909. |
[34] | KANEKO K. Period-doubling of kink-antikink patterns,quasiperiodicity in antiferro-like structures and spatial intermittency in coupled logistic lattice:towards a prelude of a field-theory of chaos[J]. Progress of Theoretical Physics, 1984, 72(3): 480-486. DOI: 10.1143/PTP.72.480. |
[35] |
WANG X F, XU J. Cascading failures in coupled map lattices[J]. Physical Review E, 2004, 70(5):056113.
doi: 10.1103/PhysRevE.70.056113 |
[36] |
WATTS D J. A simple model of global cascades on random networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(9): 5766-5771. DOI: 10.1073/pnas.082090499.
pmid: 16578874 |
[37] | MORENO Y, GÓMEZ J B, PACHECO A F. Instability of scale-free networks under node-breaking avalanches[J]. Europhysics Letters, 2002, 58(4): 630-636. DOI: 10.1209/epl/i2002-00442-2. |
[38] | XIA Y X, FAN J, HILL D. Cascading failure in Watts-Strogatz small-world networks[J]. Physica A: Statistical Mechanics and Its Applications, 2010, 389(6): 1281-1285. DOI: 10.1016/j.physa.2009.11.037. |
[39] | MIRZASOLEIMAN B, BABAEI M, JALILI M, et al. Cascaded failures in weighted networks[J]. Physical Review E, 2011, 84(4): 046114. DOI: 10.1103/physreve.84.046114. |
[40] |
ZHAO J C, LI D Q, SANHEDRAI H, et al. Spatio-temporal propagation of cascading overload failures in spatially embedded networks[J]. Nature Communications, 2016, 7: 10094. DOI: 10.1038/ncomms10094.
pmid: 26754065 |
[41] | 谢丰, 程苏琦, 陈冬青, 等. 基于级联失效的复杂网络抗毁性[J]. 清华大学学报(自然科学版), 2011, 51(10): 1252-1257. DOI: 10.16511/j.cnki.qhdxxb.2011.10.001. |
[42] |
CARRERAS B A, LYNCH V E, DOBSON I, et al. Critical points and transitions in an electric power transmission model for cascading failure blackouts[J]. Chaos, 2002, 12(4): 985-994. DOI: 10.1063/1.1505810.
pmid: 12779622 |
[43] | WU J J, GAO Z Y, SUN H J. Effects of the cascading failures on scale-free traffic networks[J]. Physica A: Statistical Mechanics and Its Applications, 2007, 378(2): 505-511. DOI: 10.1016/j.physa.2006.12.003. |
[44] | WU J J, SUN H J, GAO Z Y. Cascading failures on weighted urban traffic equilibrium networks[J]. Physica A: Statistical Mechanics and Its Applications, 2007, 386(1): 407-413. DOI: 10.1016/j.physa.2007.08.034. |
[45] | SUN L S, HUANG Y C, CHEN Y Y, et al. Vulnerability assessment of urban rail transit based on multi-static weighted method in Beijing, China[J]. Transportation Research Part A: Policy and Practice, 2018, 108: 12-24. DOI: 10.1016/j.tra.2017.12.008. |
[46] | LU Q C, ZHANG L, XU P C, et al. Modeling network vulnerability of urban rail transit under cascading failures: a coupled map lattices approach[J]. Reliability Engineering & System Safety, 2022, 221: 108320. DOI: 10.1016/j.ress.2022.108320. |
[47] | YI C Q, BAO Y Y, JIANG J C, et al. Modeling cascading failures with the crisis of trust in social networks[J]. Physica A: Statistical Mechanics and Its Applications, 2015, 436: 256-271. DOI: 10.1016/j.physa.2015.05.030. |
[48] | 马亚男, 李莹. 商业银行集团客户成员企业信用风险传导仿真研究[J]. 商业研究, 2016(12): 96-101. DOI: 10.13902/j.cnki.syyj.2016.12.013. |
[49] | DE ARRUDA G F, RODRIGUES F A, MORENO Y. Fundamentals of spreading processes in single and multilayer complex networks[J]. Physics Reports, 2018, 756:1-59. DOI: 10.1016/i.physrep.2018.06.007. |
DE ARRUDA G F, RODRIGUES F A, MORENO Y. Fundamentals of spreading processes in single and multilayer complex networks[J]. Physics Reports, 2018, 756: 1-59. DOI: 10.1016/j.physrep.2018.06.007. | |
[50] |
ALETA A, MELONI S, MORENO Y. A Multilayer perspective for the analysis of urban transportation systems[J]. Scientific Reports, 2017, 7: 44359. DOI: 10.1038/srep44359.
pmid: 28295015 |
[51] | ALETA A, MORENO Y. Multilayer networks in a nutshell[J]. Annual Review of Condensed Matter Physics, 2019, 10: 45-62. DOI: 10.1146/annurev-conmatphys-031218-013259. |
[52] | DE DOMENICO M. More is different in real-world multilayer networks[J]. Nature Physics, 2023, 19: 1247-1262. DOI: 10.1038/s41567-023-02132-1. |
[53] | WANG Z Y, CHEN G, LIU L, et al. Cascading risk assessment in power-communication interdependent networks[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 540: 120496. DOI: 10.1016/j.physa.2019.01.065. |
[54] | VESPIGNANI A. Complex networks: the fragility of interdependency[J]. Nature, 2010, 464(7291): 984-985. DOI: 10.1038/464984a. |
[55] | BULDYREV S V, PARSHANI R, PAUL G, et al. Catastrophic cascade of failures in interdependent networks[J]. Nature, 2010, 464: 1025-1028. DOI: 10.1038/nature08932. |
[56] | GAO J X, BULDYREV S V, STANLEY H E, et al. Networks formed from interdependent networks[J]. Nature Physics, 2012, 8: 40-48. DOI: 10.1038/nphys2180. |
[57] | SHAO J, BULDYREV S V, HAVLIN S, et al. Cascade of failures in coupled network systems with multiple support-dependence relations[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2011, 83(3 Pt 2): 036116. DOI: 10.1103/PhysRevE.83.036116. |
[58] | LI W, BASHAN A, BULDYREV S V, et al. Cascading failures in interdependent lattice networks: the critical role of the length of dependency links[J]. Physical Review Letters, 2012, 108(22): 228702. DOI: 10.1103/PhysRevLett.108.228702. |
[59] | BAXTER G J, DOROGOVTSEV S N, GOLTSEV A V, et al. Avalanche collapse of interdependent networks[J]. Physical Review Letters, 2012, 109(24): 248701. DOI: 10.1103/PhysRevLett.109.248701. |
[60] | LIU R R, JIA C X, LAI Y C. Asymmetry in interdependence makes a multilayer system more robust against cascading failures[J]. Physical Review E, 2019, 100: 052306. DOI: 10.1103/PhysRevE.100.052306. |
[61] | HAN H Y, YANG R N. Improvement on load-induced cascading failure in asymmetrical interdependent networks: modeling and analysis[J]. Mathematical Problems in Engineering, 2015, 2015: 194568. DOI: 10.1155/2015/194568. |
[62] | ROSATO V, ISSACHAROFF L, TIRITICCO F, et al. Modelling interdependent infrastructures using interacting dynamical models[J]. International Journal of Critical Infrastructures, 2008, 4(1/2): 63. DOI: 10.1504/ijcis.2008.016092. |
[63] | ZHANG L, WEN H Y, LU J, et al. Exploring cascading reliability of multi-modal public transit network based on complex networks[J]. Reliability Engineering & System Safety, 2022, 221: 108367. DOI: 10.1016/j.ress.2022.108367. |
[64] | RAHNAMAY-NAEINI M, HAYAT M M. Cascading failures in interdependent infrastructures: an interdependent markov-chain approach[J]. IEEE Transactions on Smart Grid, 2016, 7(4): 1997-2006. DOI: 10.1109/TSG.2016.2539823. |
[65] | 吴建军. 城市交通网络拓扑结构复杂性研究[D]. 北京: 北京交通大学, 2008. |
[66] |
SCHNEIDER C M, MOREIRA A A, ANDRADE J S Jr, et al. Mitigation of malicious attacks on networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(10): 3838-3841. DOI: 10.1073/pnas.1009440108.
pmid: 21368159 |
[67] | KOÇ Y, WARNIER M, KOOIJ R E, et al. An entropy-based metric to quantify the robustness of power grids against cascading failures[J]. Safety Science, 2013, 59: 126-134. DOI: 10.1016/j.ssci.2013.05.006. |
[68] | ZHANG Y F, NG S T. Robustness of urban railway networks against the cascading failures induced by the fluctuation of passenger flow[J]. Reliability Engineering & System Safety, 2022, 219: 108227. DOI: 10.1016/j.ress.2021.108227. |
[69] | 周琴, 徐桂琼. 基于动态级联失效的开发者协作网络鲁棒性研究[J/OL]. 复杂系统与复杂性科学.[2023-12-07]. http://kns.cnki.net/kcms/detail/37.1402.N.20231207.1017.006.html. |
[70] | MAJDANDZIC A, PODOBNIK B, BULDYREV S V, et al. Spontaneous recovery in dynamical networks[J]. Nature Physics, 2014, 10: 34-38. DOI: 10.1038/nphys2819. |
[71] | MOTTER A E. Cascade control and defense in complex networks[J]. Physical Review Letters, 2004, 93(9): 098701. DOI: 10.1103/PhysRevLett.93.098701. |
[72] | LIU C R, LI D Q, FU B W, et al. Modeling of self-healing against cascading overload failures in complex networks[J]. Europhysics Letters, 2014, 107(6): 68003. DOI: 10.1209/0295-5075/107/68003. |
[73] | ZHANG Y R, ARENAS A, YAĞAN O. Cascading failures in interdependent systems under a flow redistribution model[J]. Physical Review E, 2018, 97: 022307. DOI: 10.1103/PhysRevE.97.022307. |
[74] | OUYANG M, DUEÑAS-OSORIO L, MIN X. A three-stage resilience analysis framework for urban infrastructure systems[J]. Structural Safety, 2012, 36/37: 23-31. DOI: 10.1016/j.strusafe.2011.12.004. |
[75] | WANG J W. Mitigation strategies on scale-free networks against cascading failures[J]. Physica A: Statistical Mechanics and Its Applications, 2013, 392(9): 2257-2264. DOI: 10.1016/j.physa.2013.01.013. |
[76] | WANG J W, RONG L L. Robustness of the western United States power grid under edge attack strategies due to cascading failures[J]. Safety Science, 2011, 49(6): 807-812. DOI: 10.1016/j.ssci.2010.10.003. |
[77] | STIPPINGER M, KERTÉSZ J. Enhancing resilience of interdependent networks by healing[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 416: 481-487. DOI: 10.1016/j.physa.2014.08.069. |
[78] | LA ROCCA C E, STANLEY H E, BRAUNSTEIN L A. Strategy for stopping failure cascades in interdependent networks[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 508: 577-583. DOI: 10.1016/j.physa.2018.05.154. |
[79] | 唐亮, 焦鹏, 李纪康, 等. 带恢复策略的复杂网络级联失效机理及鲁棒性研究[J]. 控制与决策, 2018, 33(10): 1841-1850. DOI: 10.13195/j.kzyjc.2017.0728. |
[1] | GAO Zhanyi, ZHU Chengjuan, HAN Linghui. Durability and resilience of Nanjing Rail Transit Network [J]. Shandong Science, 2024, 37(4): 105-111. |
[2] | MENG Bo, KONG Xiangke, LI Shubin. The characteristics of traffic sequence data based on complex network [J]. Shandong Science, 2024, 37(1): 107-117. |
[3] | SUN Xuexin, LING Xiang. Traffic-driven epidemic spreading in two-layer coupled networks [J]. Shandong Science, 2023, 36(4): 89-96. |
[4] | MA Xia-xia, CAI Yong-ming. Study on the robustness of Chinese railway and airline multilayer networks based on complex network theory [J]. SHANDONG SCIENCE, 2017, 30(5): 70-78. |
[5] | LIU Xin-Chao, JI Yan, WANG Ping. Exponential synchronization of complex networks with delayed and nonlinearly coupled nodes [J]. J4, 2013, 26(6): 40-44. |
|