[1] |
林森, 赵颍. 水下光学图像中目标探测关键技术研究综述[J]. 激光与光电子学进展, 2020, 57(6): 26-37. DOI: 10.3788/LOP57.060002.
|
[2] |
FAYAZ S, PARAH S A, QURESHI G J. Underwater object detection: architectures and algorithms-a comprehensive review[J]. Multimedia Tools and Applications, 2022, 81(15): 20871-20916. DOI: 10.1007/s11042-022-12502-1.
|
[3] |
檀盼龙, 吴小兵, 张晓宇. 基于声呐图像的水下目标识别研究综述[J]. 数字海洋与水下攻防, 2022, 5(4): 342-353. DOI: 10.19838/j.issn.2096-5753.2022.04.010.
|
[4] |
于红. 水产动物目标探测与追踪技术及应用研究进展[J]. 大连海洋大学学报, 2020, 35(6): 793-804. DOI: 10.16535/j.cnki.dlhyxb.2020-263.
|
[5] |
董金耐, 杨淼, 谢卓冉, 等. 水下图像目标检测数据集及检测算法综述[J]. 海洋技术学报, 2022, 41(5): 60-72. DOI: 10.3969/j.issn.1003-2029.2022.05.007.
|
[6] |
FISHER R B, CHEN-BURGERY H, GIORDANO D, et al. Fish4Knowledge: collecting and analyzing massive coral reef fish video data[M]. Berlin, Germany: Springer. DOI:10.10071978-3-319-3208-9.
|
[7] |
PEDERSEN M, HAURUM J B, GADE R, et al. Detection of marine animals in a new underwater dataset with varying visibility[C]// 2019 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach, USA: IEEE, 2019:18-26.
|
[8] |
Kaggle-NCFM[DB/OL].[2023-01-02]. https://www.kaggle.com/c/the-natureconservancy-fisheries-monitoring.
|
[9] |
FishCLEF2015[DB/OL].[2023-01-02]. https://www.imageclef.org/lifeclef/2015/fish.
|
[10] |
GARCIA-D'URSO N, GALAN-CUENCA A, PÉREZ-SÁNCHEZ P, et al. TheDeepFish computer vision dataset for fish instance segmentation, classification, and size estimation[J]. Scientific Data, 2022, 9(1): 1-7. DOI: 10.1038/s41597-022-01416-0.
|
[11] |
URPC[DB/OL].[2023-01-02]. http://www.urpc.org.cn/index.html.
|
[12] |
WANG Z H, LIU C W, WANG S J, et al. UDD: an underwater open-sea farm object detection dataset for underwater robotpicking[EB/OL]. [2023-01-03]. https://arxiv.org/abs/2003.01446.
|
[13] |
LIU C W, LI H J, WANG S C, et al. A dataset and benchmark of underwater object detection for robot picking[C]// 2021 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). Shenzhen, China: IEEE, 2021: 1-6. DOI: 10.1109/ICMEW53276.2021.9455997.
|
[14] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE, 2014: 580-587. DOI: 10.1109/CVPR.2014.81.
|
[15] |
GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2016: 1440-1448.DOI: 10.1109/ICCV.2015.169.
|
[16] |
REN S Q, HE K M, GIRSHICKR, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031.
pmid: 27295650
|
[17] |
袁红春, 张硕. 基于Faster R-CNN和图像增强的水下鱼类目标检测方法[J]. 大连海洋大学学报, 2020, 35(4): 612-619. DOI: 10.16535/j.cnki.dlhyxb.2019-146.
|
[18] |
LIU J, LIU S, XU S J, et al. Two-stage underwater object detection network usingswin transformer[J]. IEEE Access, 2022, 10: 117235-117247. DOI: 10.1109/ACCESS.2022.3219592.
|
[19] |
LIN W H, ZHONG J X, LIU S, et al. ROIMIX: proposal-fusion among multiple images for underwater object detection[C]// ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Barcelona, Spain:IEEE, 2020: 2588-2592. DOI:10.1109/ICASSP40776.2020.9053829.
|
[20] |
SHI P F, XU X W, NI JJ, et al. Underwater biological detection algorithm based on improved faster-RCNN[J]. Water, 2021, 13(17): 2420. DOI: 10.3390/w13172420.
|
[21] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016: 779-788. DOI: 10.1109/CVPR.2016.91.
|
[22] |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA. IEEE, 2017: 6517-6525. DOI: 10.1109/CVPR.2017.690.
|
[23] |
REDMON J, FARHADI A. YOLOv3: An incrementalimprovement[EB/OL].[2023-01-03]. https://arxiv.org/abs/1804.02767.pdf.
|
[24] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of objectdetection[EB/OL].[2023-01-03]. https://arxiv.org/abs/2004.10934.pdf.
|
[25] |
WANG M F, LIU M Y, ZHANG F H, et al. Fast classification and detection of fish images with YOLOv2[C]// 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO). Kobe, Japan: IEEE, 2018: 1-4. DOI: 10.1109/OCEANSKOBE.2018.8559141.
|
[26] |
AL MUKSIT A, HASAN F, HASAN BHUIYAN EMON M F, et al. YOLO-Fish: a robust fish detection model to detect fish in realistic underwater environment[J]. Ecological Informatics, 2022, 72: 101847. DOI: 10.1016/j.ecoinf.2022.101847.
|
[27] |
CHEN L, LIU Z H, TONG L, et al. Underwater object detection using Invert Multi-ClassAdaboost with deep learning[C]// 2020 International Joint Conference on Neural Networks (IJCNN). Glasgow, UK: IEEE, 2020: 1-8. DOI: 10.1109/IJCNN48605.2020.9207506.
|
[28] |
ISA I S, ROSLI M S A, YUSOF U K, et al. Optimizing the hyperparameter tuning of YOLOv5 for underwater detection[J]. IEEE Access, 2022, 10: 52818-52831. DOI: 10.1109/ACCESS.2022.3174583.
|
[29] |
ZHAI X Y, WEI H L, HE YY, et al. Underwater Sea cucumber identification based on improved YOLOv5[J]. Applied Sciences, 2022, 12(18): 9105. DOI: 10.3390/app12189105.
|
[30] |
LEI F, TANG FF, LI S H. Underwater target detection algorithm based on improved YOLOv5[J]. Journal of Marine Science and Engineering, 2022, 10(3): 310. DOI: 10.3390/jmse10030310.
|
[31] |
LI X, SHANG M, QIN H W, et al. Fast accurate fish detection and recognition of underwater images with Fast R-CNN[C]// OCEANS 2015-MTS/IEEE Washington. Washington, DC: IEEE, 2016: 1-5.
|
[32] |
XU W W, MATZNER S. Underwater fish detection using deep learning for water power applications[C]// 2018 International Conference on Computational Science and Computational Intelligence (CSCI). Las Vegas, USA: IEEE, 2020: 313-318. DOI: 10.1109/CSCI46756.2018.00067.
|
[33] |
刘萍, 杨鸿波, 宋阳. 改进YOLOv3网络的海洋生物识别算法[J]. 计算机应用研究, 2020, 37(S1): 394-397.
|
[34] |
KNAUSGÅRD K M, WIKLUND A, SØRDALEN T K, et al. Temperate fish detection and classification: a deep learning based approach[J]. Applied Intelligence, 2022, 52(6): 6988-7001. DOI: 10.1007/s10489-020-02154-9.
|
[35] |
LI A L, YU L, TIAN S W. Underwater biological detection based on YOLOv4 combined with channel attention[J]. Journal of Marine Science and Engineering, 2022, 10(4): 469. DOI:10.3390/jmse10040469.
|
[36] |
张琳, 葛艳, 杜军威, 等. 改进FCOS网络的海洋鱼类目标检测[J]. 计算机系统应用, 2023, 32(3):309-315. DOI: 10.15888/j.cnki.csa.008965.
|