|
[1] 张含,
李文静,
林宇,
等.
UPLC法测定蒲公英不同用药部位中3种活性成分含量[J].
中国野生植物资源,
2024, 43(11): 51-56.DOI:
10.3969/j.issn.1006-9690.2024.11.007.
[2] 高朋, 赵敏,
马致静,
等.
不同干燥方法对蒲公英叶总酚含量及抗氧化能力的影响[J].
现代食品,
2023, 29(19): 157-159. DOI: 10.16736/j.cnki.cn41-1434/ts.2023.19.037.
[3] ZANG Z P, ZHANG Q, HUANG X P, et al. Effect of
ultrasonic combined with vacuum far-infrared on the drying characteristics and
physicochemical quality ofAngelica
sinensis[J]. Food and Bioprocess Technology, 2023, 16(11): 2455-2470. DOI:
10.1007/s11947-023-03076-3.
[4] HUANG D, MEN K Y, LI D P, et al. Application of
ultrasound technology in the drying of food products[J]. Ultrasonics
Sonochemistry, 2020, 63: 104950. DOI: 10.1016/j.ultsonch.2019.104950.
[5] FAN K, ZHANG M, MUJUMDAR A S. Application of
airborne ultrasound in the convective drying of fruits and vegetables: A
review[J]. Ultrasonics Sonochemistry, 2017, 39: 47-57. DOI:
10.1016/j.ultsonch.2017.04.001.
[6] 王学成, 伍振峰,
徐诗军,
等.
超声强化干燥技术与设备及其在中药领域应用的研究进展[J].
中国医药工业杂志,
2022, 53(04): 446-453. DOI: 10.16522/j.cnki.cjph.2022.04.003.
[7] MAGALHÃES M L, CARTAXO S J M, GALLÃO M I, et al.
Drying intensification combining ultrasound pre-treatment and
ultrasound-assisted air drying[J]. Journal of Food Engineering, 2017, 215:
72-77. DOI: 10.1016/j.jfoodeng.2017.07.027.
[8] CAO Y, TAO Y, ZHU X H, et al. Effect of microwave
and air-borne ultrasound-assisted air drying on drying kinetics and
phytochemical properties of broccoli floret[J]. Drying Technology, 2020,
38(13): 1733-1748. DOI: 10.1080/07373937.2019.1662437.
[9]
TAO Y, ZHANG J L, JIANG S R, et al. Contacting ultrasound enhanced hot-air
convective drying of garlic slices: Mass transfer modeling and quality
evaluation[J]. Journal of Food Engineering, 2018, 235: 79-88. DOI:
10.1016/j.jfoodeng.2018.04.028.
[10]
ZHANG Y W, ABATZOGLOU N. Review: Fundamentals, applications and potentials of
ultrasound-assisted drying[J]. Chemical Engineering Research and Design, 2020,
154: 21-46. DOI: 10.1016/j.cherd.2019.11.025.
[11] 曾雅. 猕猴桃超声-远红外辐射干燥特性及生物活性成分研究[D].
洛阳:
河南科技大学,
2020. DOI: 10.27115/d.cnki.glygc.2020.000143.
[12] 孙畅莹, 刘云宏, 曾雅, 等. 直触式超声强化热风干燥梨片的干燥特性[J].
食品与机械,
2018, 34(09): 37-42. DOI: 10.13652/j.issn.1003-5788.2018.09.008.
[13] FENG Z, ZHANG M, GUO L, et al. Effect of Direct-Contact Ultrasonic
and Far Infrared Combined Drying on the Drying Characteristics and Quality of
Ginger[J]. Processes, 2024, 12(1): 98. DOI: 10.3390/pr12010098.
[14] 中华人民共和国国家卫生和计划生育委员会.
食品安全国家标准
食品中水分的测定: GB 5009.3—2016[S]. 北京: 中国标准出版社, 2017.
[15] 葛莉, 姚园园, 康天兰, 等. 不同收获期贯叶连翘花中抗氧化能力、主要活性物质变化及挥发性组分分离鉴定[J]. 草业学报, 2017, 26(9): 66-74. DOI: 10.11686/cyxb2016484.
[16]
杨鑫嵎,
刘宁,
吴金伟,
等.
基于熵权-灰色关联分析法对不同产地猫爪草的质量评价[J].
中南农业科技,
2024(7): 91-93. DOI: 10.3969/j.issn.1007-273X.2024.07.022.
[17] WANG X L, FENG Y B,
ZHOU C S, et al. Effect of vacuum and ethanol pretreatment on infrared-hot air
drying of scallion (Allium fistulosum)[J].
Food Chemistry, 2019, 295: 432-440. DOI: 10.1016/j.foodchem.2019.05.145.
[18] ZHANG Z M, YU J Z, CHENG P, et al. Effect of
different process parameters and ultrasonic treatment during solid osmotic
dehydration of jasmine for extraction of flavoured syrup on the mass transfer
kinetics and quality attributes[J]. Food and Bioprocess Technology, 2022,
15(5): 1055-1072. DOI: 10.1007/s11947-022-02787-3.
[19] 刘云宏, 孙畅莹,
曾雅.
直触式超声功率对梨片超声强化热风干燥水分迁移的影响[J].
农业工程学报,
2018, 34(19): 284-292. DOI: 10.11975/j.issn.1002-6819.2018.19.036.
[20] 刘涛, 周舟,
王清,
等.
大别山板栗片热泵干燥特性及动力学模型分析[J].
保鲜与加工,
2024, 24(7): 35-43. DOI: 10.3969/j.issn.1009-6221.2024.07.006.
[21] 唐小闲, 蔡明君,
韦珍珍,
等.
低场核磁共振技术分析杏鲍菇在热风-微波联合干燥过程中的水分变化[J].
粮食与油脂,
2023, 36(8): 90-94. DOI: 10.3969/j.issn.1008-9578.2023.08.019.
[22] MOSQUEDA M R P, TABIL L G, CHRISTENSEN C. Effect
of drying conditions and level of condensed distillers solubles on protein
quality of wheat distillers dried grain with solubles[J]. Drying Technology,
2013, 31(7): 811-824. DOI: 10.1080/07373937.2013.765446.
[23] MALVANDI A, NICOLE COLEMAN D, LOOR J J, et al. A
novel sub-pilot-scale direct-contact ultrasonic dehydration technology for
sustainable production of distillers dried grains (DDG)[J]. Ultrasonics
Sonochemistry, 2022, 85: 105982. DOI: 10.1016/j.ultsonch.2022.105982.
[24] DENG L-Z, PAN Z L, MUJUMDAR A S, et al.
High-humidity hot air impingement blanching (HHAIB) enhances drying quality of
apricots by inactivating the enzymes, reducing drying time and altering
cellular structure[J]. Food Control, 2019, 96: 104-111. DOI:
10.1016/j.foodcont.2018.09.008.
[25] 仇徐亮, 冯蕾, 聂梅梅, 等. 超声预处理对荠菜微波干燥品质的影响[J].
农业工程学报, 2024, 40(6): 155-167.
[26]
马致静,
车寒梅,
柳文军,
等.
蒲公英不同干燥条件下总黄酮含量及抗氧化活性研究[J].
现代农业科技,
2024(3): 141-143. DOI: 10.3969/j.issn.1007-5739.2024.03.032.
[27] ZHANG Q, WAN F X, ZANG Z P, et al. Effect of
ultrasonic far-infrared synergistic drying on the characteristics and qualities
of wolfberry (Lycium barbarumL.)[J].
Ultrasonics Sonochemistry, 2022, 89: 106134. DOI:
10.1016/j.ultsonch.2022.106134.
[28] SHANG J W, ZHANG Q, WANG T X, et al. Effect of
ultrasonic pretreatment on the far-infrared drying process and quality
characteristics of licorice[J]. Foods, 2023, 12(12): 2414. DOI:
10.3390/foods12122414.
[29] LIU Y H, ZENG Y, GUO L G, et al. Drying process
and quality characteristics of contact ultrasound reinforced heat pump drying
on kiwifruit slices[J]. Journal of Food Processing and Preservation, 2019,
43(10): e14162. DOI: 10.1111/jfpp.14162.
[30] 井亚江, 黄建萍,
王七龙,
等.
基于熵权TOPSIS法和灰色关联度分析筛选桔梗最佳采收期[J].
中国现代应用药学,
2024, 41(9): 1229-1237. DOI: 10.13748/j.cnki.issn1007-7693.20231105.
|