Shandong Science ›› 2022, Vol. 35 ›› Issue (5): 112-121.doi: 10.3976/j.issn.1002-4026.2022.05.014
• Environment and Ecology • Previous Articles Next Articles
YANG Dong(
), DANG Meng-yuan, HAN Feng, SHI Feng
Received:2021-09-14
Published:2022-10-20
Online:2022-10-10
CLC Number:
YANG Dong, DANG Meng-yuan, HAN Feng, SHI Feng. Research progress of material stock based on bibliometric analysis[J].Shandong Science, 2022, 35(5): 112-121.
Table 1
Statistics of highly cited authors and their institutions"
| 序号 | 作者 | 机构 | 被引次数 | H指数 | 序号 | 作者 | 机构 | 被引次数 | H指数 |
|---|---|---|---|---|---|---|---|---|---|
| 1 | Graedel T.E. | 耶鲁大学 | 1 865 | 66 | 8 | Pauliuk S. | 挪威科技大学 | 613 | 19 |
| 2 | Müller D.B. | 挪威科技大学 | 1 389 | 29 | 9 | Adachi Y. | 东京大学 | 574 | 21 |
| 3 | Bertram M. | 耶鲁大学 | 898 | 19 | 10 | Wang T. | 同济大学 | 526 | 25 |
| 4 | Daigo I. | 东京大学 | 766 | 21 | 11 | Hashimoto S. | 立命馆大学 | 486 | 20 |
| 5 | Gordon R.B. | 耶鲁大学 | 656 | 29 | 12 | Spatari S. | 耶鲁大学 | 436 | 20 |
| 6 | Tanikawa H. | 名古屋大学 | 618 | 21 | 13 | Brattebø H. | 挪威科技大学 | 379 | 22 |
| 7 | Matsuno Y. | 千叶大学 | 617 | 19 | 14 | Chen W.Q. | 中国科学院 | 301 | 25 |
| [1] |
LANAU M, LIU G, KRAL U, et al. Taking stock of built environment stock studies: progress and prospects[J]. Environmental Science & Technology, 2019, 53(15): 8499-8515. DOI: 10.1021/acs.est.8b06652.
doi: 10.1021/acs.est.8b06652 |
| [2] |
FISHMAN T, SCHANDL H, TANIKAWA H. The socio-economic drivers of material stock accumulation in Japan's prefectures[J]. Ecological Economics, 2015, 113: 76-84. DOI: 10.1016/j.ecolecon.2015.03.001.
doi: 10.1016/j.ecolecon.2015.03.001 |
| [3] |
KUONG I H, LI J H, ZHANG J, et al. Estimating the evolution of urban mining resources in Hong Kong, up to the year 2050[J]. Environmental Science & Technology, 2019, 53(3): 1394-1403. DOI: 10.1021/acs.est.8b04063.
doi: 10.1021/acs.est.8b04063 |
| [4] |
KRAUSMANN F, WIEDENHOFER D, LAUK C, et al. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use[J]. PNAS, 2017, 114(8): 1880-1885. DOI: 10.1073/pnas.1613773114.
doi: 10.1073/pnas.1613773114 pmid: 28167761 |
| [5] |
LIU G, MÜLLER D B. Centennial evolution of aluminum in-use stocks on our aluminized planet[J]. Environmental Science & Technology, 2013, 47(9): 4882-4888. DOI: 10.1021/es305108p.
doi: 10.1021/es305108p |
| [6] |
AUGISEAU V, BARLES S. Studying construction materials flows and stock: A review[J]. Resources, Conservation and Recycling, 2017, 123: 153-164. DOI: 10.1016/j.resconrec.2016.09.002.
doi: 10.1016/j.resconrec.2016.09.002 |
| [7] | 李宜博. 北京市建筑存量演化及驱动因素分析[D]. 北京: 北京工业大学, 2019. |
| [8] |
MÜLLER E, HILTY L M, WIDMER R, et al. Modeling metal stocks and flows: A review of dynamic material flow analysis methods[J]. Environmental Science & Technology, 2014, 48(4): 2102-2113. DOI: 10.1021/es403506a.
doi: 10.1021/es403506a |
| [9] |
ALLESCH A, BRUNNER P H. Material flow analysis as a decision support tool for waste management: A literature review[J]. Journal of Industrial Ecology, 2015, 19(5): 753-764. DOI: 10.1111/jiec.12354.
doi: 10.1111/jiec.12354 |
| [10] |
HUANG C L, VAUSE J, MA H W, et al. Using material/substance flow analysis to support sustainable development assessment: A literature review and outlook[J]. Resources, Conservation and Recycling, 2012, 68: 104-116. DOI: 10.1016/j.resconrec.2012.08.012.
doi: 10.1016/j.resconrec.2012.08.012 |
| [11] |
ZHI W, JI G D. Constructed wetlands, 1991—2011: A review of research development, current trends, and future directions[J]. The Science of the Total Environment, 2012, 441: 19-27. DOI: 10.1016/j.scitotenv.2012.09.064.
doi: 10.1016/j.scitotenv.2012.09.064 |
| [12] |
杜文鹏, 闫慧敏, 杨艳昭. 自然资源资产负债表研究进展综述[J]. 资源科学, 2018, 40(5): 875-887. DOI: 10.18402/resci.2018.05.01.
doi: 10.18402/resci.2018.05.01 |
| [13] |
CHEN C M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377. DOI: 10.1002/asi.20317.
doi: 10.1002/asi.20317 |
| [14] | 张璇, 苏楠, 杨红岗, 等. 2000—2011年国际电子政务的知识图谱研究:基于citespace和VOSviewer的计量分析[J]. 情报杂志, 2012, 31(12): 51-57. |
| [15] |
VAN DER VOET E, KLEIJN R, HUELE R, et al. Predicting future emissions based on characteristics of stocks[J]. Ecological Economics, 2002, 41(2): 223-234. DOI: 10.1016/s0921-8009(02)00028-9.
doi: 10.1016/s0921-8009(02)00028-9 |
| [16] |
KLEIJN R, HUELE R, VAN DER VOET E. Dynamic substance flow analysis: The delaying mechanism of stocks, with the case of PVC in Sweden[J]. Ecological Economics, 2000, 32(2): 241-254. DOI: 10.1016/s0921-8009(99)00090-7.
doi: 10.1016/s0921-8009(99)00090-7 |
| [17] |
MELO M T. Statistical analysis of metal scrap generation: The case of aluminium in Germany[J]. Resources, Conservation and Recycling, 1999, 26(2): 91-113. DOI: 10.1016/s0921-3449(98)00077-9.
doi: 10.1016/s0921-3449(98)00077-9 |
| [18] |
GRAEDEL T E, VAN BEERS D, BERTRAM M, et al. Multilevel cycle of anthropogenic copper[J]. Environmental Science & Technology, 2004, 38(4): 1242-1252. DOI: 10.1021/es030433c.
doi: 10.1021/es030433c |
| [19] |
SPATARI S, BERTRAM M, GORDON R B, et al. Twentieth century copper stocks and flows in North America: A dynamic analysis[J]. Ecological Economics, 2005, 54(1): 37-51. DOI: 10.1016/j.ecolecon.2004.11.018.
doi: 10.1016/j.ecolecon.2004.11.018 |
| [20] |
WANG T, MÜLLER D B, GRAEDEL T E. Forging the anthropogenic iron cycle[J]. Environmental Science & Technology, 2007, 41(14): 5120-5129. DOI: 10.1021/es062761t.
doi: 10.1021/es062761t |
| [21] |
PAULIUK S, WANG T, MÜLLER D B. Steel all over the world: Estimating in-use stocks of iron for 200 countries[J]. Resources, Conservation and Recycling, 2013, 71: 22-30. DOI: 10.1016/j.resconrec.2012.11.008.
doi: 10.1016/j.resconrec.2012.11.008 |
| [22] |
MÜLLER D B, WANG T, DUVAL B. Patterns of iron use in societal evolution[J]. Environmental Science & Technology, 2011, 45(1): 182-188. DOI: 10.1021/es102273t.
doi: 10.1021/es102273t |
| [23] |
PAULIUK S, WANG T, MÜLLER D B. Moving toward the circular economy: The role of stocks in the Chinese steel cycle[J]. Environmental Science & Technology, 2012, 46(1): 148-154. DOI: 10.1021/es201904c.
doi: 10.1021/es201904c |
| [24] |
GRAEDEL T E, ALLWOOD J, BIRAT J P, et al. What do we know about metal recycling rates?[J]. Journal of Industrial Ecology, 2011, 15(3): 355-366. DOI: 10.1111/j.1530-9290.2011.00342.x.
doi: 10.1111/j.1530-9290.2011.00342.x |
| [25] |
TANIKAWA H, FISHMAN T, OKUOKA K, et al. The weight of society over time and space: A comprehensive account of the construction material stock of Japan, 1945—2010[J]. Journal of Industrial Ecology, 2015, 19(5): 778-791. DOI: 10.1111/jiec.12284.
doi: 10.1111/jiec.12284 |
| [26] |
BERGSDAL H, BRATTEBØ H, BOHNE R A, et al. Dynamic material flow analysis for Norway's dwelling stock[J]. Building Research & Information, 2007, 35(5): 557-570. DOI: 10.1080/09613210701287588.
doi: 10.1080/09613210701287588 |
| [27] |
MÜLLER D B. Stock dynamics for forecasting material flows:Case study for housing in The Netherlands[J]. Ecological Economics, 2006, 59(1): 142-156. DOI: 10.1016/j.ecolecon.2005.09.025.
doi: 10.1016/j.ecolecon.2005.09.025 |
| [28] |
ORTLEPP R, GRUHLER K, SCHILLER G. Material stocks in Germany's non-domestic buildings: A new quantification method[J]. Building Research & Information, 2016, 44(8): 840-862. DOI: 10.1080/09613218.2016.1112096.
doi: 10.1080/09613218.2016.1112096 |
| [29] |
MIATTO A, SCHANDL H, FORLIN L, et al. A spatial analysis of material stock accumulation and demolition waste potential of buildings: A case study of Padua[J]. Resources, Conservation and Recycling, 2019, 142: 245-256. DOI: 10.1016/j.resconrec.2018.12.011.
doi: 10.1016/j.resconrec.2018.12.011 |
| [30] |
LEDERER J, GASSNER A, KERINGER F, et al. Material flows and stocks in the urban building sector: A case study from Vienna for the years 1990-2015[J]. Sustainability, 2019, 12(1): 300. DOI: 10.3390/su12010300.
doi: 10.3390/su12010300 |
| [31] |
YANG W, KOHLER N. Simulation of the evolution of the Chinese building and infrastructure stock[J]. Building Research & Information, 2008, 36(1): 1-19. DOI: 10.1080/09613210701702883.
doi: 10.1080/09613210701702883 |
| [32] |
GRAEDEL T E, BEERS D, BERTRAM M, et al. The multilevel cycle of anthropogenic zinc[J]. Journal of Industrial Ecology, 2005, 9(3): 67-90. DOI: 10.1162/1088198054821573.
doi: 10.1162/1088198054821573 |
| [33] |
JOHNSON J, JIRIKOWIC J, BERTRAM M, et al. Contemporary anthropogenic silver cycle: A multilevel analysis[J]. Environmental Science & Technology, 2005, 39(12): 4655-4665. DOI: 10.1021/es048319x.
doi: 10.1021/es048319x |
| [34] |
JOHNSON J, SCHEWEL L, GRAEDEL T E. The contemporary anthropogenic chromium cycle[J]. Environmental Science & Technology, 2006, 40(22): 7060-7069. DOI: 10.1021/es060061i.
doi: 10.1021/es060061i |
| [35] |
RECK B K, MÜLLER D B, ROSTKOWSKI K, et al. Anthropogenic nickel cycle: Insights into use, trade, and recycling[J]. Environmental Science & Technology, 2008, 42(9): 3394-3400. DOI: 10.1021/es072108l.
doi: 10.1021/es072108l |
| [36] |
PAULIUK S, MÜLLER D B. The role of in-use stocks in the social metabolism and in climate change mitigation[J]. Global Environmental Change, 2014, 24: 132-142. DOI: 10.1016/j.gloenvcha.2013.11.006.
doi: 10.1016/j.gloenvcha.2013.11.006 |
| [37] |
HU M M, VAN DER VOET E, HUPPES G. Dynamic material flow analysis for strategic construction and demolition waste management in Beijing[J]. Journal of Industrial Ecology, 2010, 14(3): 440-456. DOI: 10.1111/j.1530-9290.2010.00245.x.
doi: 10.1111/j.1530-9290.2010.00245.x |
| [38] |
SARTORI I, BERGSDAL H, MÜLLER D B, et al. Towards modelling of construction, renovation and demolition activities: Norway's dwelling stock, 1900-2100[J]. Building Research & Information, 2008, 36(5): 412-425. DOI: 10.1080/09613210802184312.
doi: 10.1080/09613210802184312 |
| [39] |
TANIKAWA H, HASHIMOTO S. Urban stock over time: Spatial material stock analysis using 4d-GIS[J]. Building Research & Information, 2009, 37(5/6): 483-502. DOI: 10.1080/09613210903169394.
doi: 10.1080/09613210903169394 |
| [40] |
KLEEMANN F, LEDERER J, RECHBERGER H, et al. GIS-based analysis of vienna's material stock in buildings[J]. Journal of Industrial Ecology, 2017, 21(2): 368-380. DOI: 10.1111/jiec.12446.
doi: 10.1111/jiec.12446 |
| [41] |
GUO Z, HU D, ZHANG F H, et al. An integrated material metabolism model for stocks of urban road system in Beijing, China[J]. Science of the Total Environment, 2014, 470/471: 883-894. DOI: 10.1016/j.scitotenv.2013.10.041.
doi: 10.1016/j.scitotenv.2013.10.041 |
| [42] |
WU H Y, WANG J Y, DUAN H B, et al. An innovative approach to managing demolition waste via GIS (geographic information system): A case study in Shenzhen city, China[J]. Journal of Cleaner Production, 2016, 112: 494-503. DOI: 10.1016/j.jclepro.2015.08.096.
doi: 10.1016/j.jclepro.2015.08.096 |
| [43] |
SCHEBEK L, SCHNITZER B, BLESINGER D, et al. Material stocks of the non-residential building sector: The case of the Rhine-Main area[J]. Resources, Conservation and Recycling, 2017, 123: 24-36. DOI: 10.1016/j.resconrec.2016.06.001.
doi: 10.1016/j.resconrec.2016.06.001 |
| [44] |
HAN J, CHEN W Q, ZHANG L X, et al. Uncovering the spatiotemporal dynamics of urban infrastructure development: A high spatial resolution material stock and flow analysis[J]. Environmental Science & Technology, 2018, 52(21): 12122-12132. DOI: 10.1021/acs.est.8b03111.
doi: 10.1021/acs.est.8b03111 |
| [45] |
MESTA C, KAHHAT R, SANTA-CRUZ S. Geospatial characterization of material stock in the residential sector of a Latin-American city[J]. Journal of Industrial Ecology, 2019, 23(1): 280-291. DOI: 10.1111/jiec.12723.
doi: 10.1111/jiec.12723 |
| [46] |
LANAU M, LIU G. Developing an urban resource cadaster for circular economy: A case of Odense, Denmark[J]. Environmental Science & Technology, 2020, 54(7): 4675-4685. DOI: 10.1021/acs.est.9b07749.
doi: 10.1021/acs.est.9b07749 |
| [47] |
HATTORI R, HORIE S, HSU F C, et al. Estimation of in-use steel stock for civil engineering and building using nighttime light images[J]. Resources, Conservation and Recycling, 2014, 83: 1-5. DOI: 10.1016/j.resconrec.2013.11.007.
doi: 10.1016/j.resconrec.2013.11.007 |
| [48] |
WANG H Y, CHEN D J, DUAN H B, et al. Characterizing urban building metabolism with a 4D-GIS model: A case study in China[J]. Journal of Cleaner Production, 2019, 228: 1446-1454. DOI: 10.1016/j.jclepro.2019.04.341.
doi: 10.1016/j.jclepro.2019.04.341 |
| [49] |
MAO R C, BAO Y, HUANG Z, et al. High-resolution mapping of the urban built environment stocks in Beijing[J]. Environmental Science & Technology, 2020, 54(9): 5345-5355. DOI: 10.1021/acs.est.9b07229.
doi: 10.1021/acs.est.9b07229 |
| [50] |
ZELTNER C, BADER H P, SCHEIDEGGER R, et al. Sustainable metal management exemplified by copper in the USA[J]. Regional Environmental Change, 1999, 1(1): 31-46. DOI: 10.1007/s101130050006.
doi: 10.1007/s101130050006 |
| [51] |
THIÉBAUD E, HILTY L, SCHLUEP M, et al. Where do our resources go? Indium, neodymium, and gold flows connected to the use of electronic equipment in Switzerland[J]. Sustainability, 2018, 10(8): 2658. DOI: 10.3390/su10082658.
doi: 10.3390/su10082658 |
| [52] |
WANG M X, YOU X L, LI X, et al. Watch more, waste more? A stock-driven dynamic material flow analysis of metals and plastics in TV sets in China[J]. Journal of Cleaner Production, 2018, 187: 730-739. DOI: 10.1016/j.jclepro.2018.03.243.
doi: 10.1016/j.jclepro.2018.03.243 |
| [53] |
MÜLLER D B, LIU G, LØVIK A N, et al. Carbon emissions of infrastructure development[J]. Environmental Science & Technology, 2013, 47(20): 11739-11746. DOI: 10.1021/es402618m.
doi: 10.1021/es402618m |
| [54] |
KRAUSMANN F, WIEDENHOFER D, HABERL H. Growing stocks of buildings, infrastructures and machinery as key challenge for compliance with climate targets[J]. Global Environmental Change, 2020, 61: 102034. DOI: 10.1016/j.gloenvcha.2020.102034.
doi: 10.1016/j.gloenvcha.2020.102034 |
| [55] |
WATARI T, NANSAI K, NAKAJIMA K, et al. Integrating Circular Economy Strategies with Low-Carbon Scenarios: Lithium Use in Electric Vehicles[J]. Environmental Science and Technology, 2019, 53(20): 11657-11665. DOI: 10.1021/acs.est.9b02872.
doi: 10.1021/acs.est.9b02872 pmid: 31577427 |
| [56] |
BAI J, QU J S, MARASENI T, et al. Spatial and temporal variations of embodied carbon emissions in China's infrastructure[J]. Sustainability, 2019, 11(3): 749. DOI: 10.3390/su11030749.
doi: 10.3390/su11030749 |
| [1] | JI Xiao-mei, SHI Feng, ZHOU Ai-wen, FAN Lin. Dynamic evaluation of resources utilization pressure in Shandong Province based on material flow analysis [J]. SHANDONG SCIENCE, 2018, 31(1): 96-. |
| [2] | JI Xiao-Mei, SHI Feng, JIA Yong-Fei. Entropy weight method based evaluation on government environmental action of municipalities in Shandong Province [J]. J4, 2013, 26(5): 111-116. |
| [3] | RU Xu-Wei, WU Hong-Zhi, ZHANG Qing. Comprehensive evaluation for ecological carrying capacity of Jinan [J]. J4, 2013, 26(1): 87-92. |
|
||
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits third parties to freely share (i.e., copy and redistribute the material in any medium or format) and adapt (i.e., remix, transform, or build upon the material) the articles published in this journal, provided that appropriate credit is given, a link to the license is provided, and any changes made are indicated. The material may not be used for commercial purposes. For details of the CC BY-NC 4.0 license, please visit: https://creativecommons.org/licenses/by-nc/4.0