[1] |
GIELEN D, BOSHELL F, SAYGIN D, et al. The role of renewable energy in the global energy transformation[J]. Energy Strategy Reviews, 2019, 24: 38-50. DOI: 10.1016/j.esr.2019.01.006.
|
[2] |
AZIZ M, JUANGSA F B, IRHAMNA A R, et al. Ammonia utilization technology for thermal power generation: A review[J]. Journal of the Energy Institute, 2023, 111: 101365. DOI: 10.1016/j.joei.2023.101365.
|
[3] |
LIU T Y, SARTORI S. Greening the production and utilization of ammonia[J]. MRS Bulletin, 2020, 45(9): 698-699. DOI: 10.1557/mrs.2020.238.
|
[4] |
SHEN Y Z, NAZIR S M, ZHANG K, et al. Waste heat recovery optimization in ammonia-based gas turbine applications[J]. Energy, 2023, 280: 128079. DOI: 10.1016/j.energy.2023.128079.
|
[5] |
PASHCHENKO D, MUSTAFIN R, KARPILOV I. Ammonia-fired chemically recuperated gas turbine: Thermodynamic analysis of cycle and recuperation system[J]. Energy, 2022, 252: 124081. DOI: 10.1016/j.energy.2022.124081.
|
[6] |
Power M.Mitsubishi power commences development of world’s first ammonia-fired 40MW class gas turbine system. 2021 https://power.mhi.com/news/20210301.html
|
[7] |
PASHCHENKO D. Ammonia fired gas turbines: Recent advances and future perspectives[J]. Energy, 2024, 290: 130275. DOI: 10.1016/j.energy.2024.130275.
|
[8] |
LEE H, LEE M J. Recent advances in ammonia combustion technology in thermal power generation system for carbon emission reduction[J]. Energies, 2021, 14(18): 5604. DOI: 10.3390/en14185604.
|
[9] |
BOŽO M G, VALERA-MEDINA A. Prediction of novel humified gas turbine cycle parameters for ammonia/hydrogen fuels[J]. Energies, 2020, 13(21): 5749. DOI: 10.3390/en13215749.
|
[10] |
KELLER M, KOSHI M, OTOMO J, et al. Thermodynamic evaluation of an ammonia-fueled combined-cycle gas turbine process operated under fuel-rich conditions[J]. Energy, 2020, 194: 116894. DOI: 10.1016/j.energy.2020.116894.
|
[11] |
SU B S, HUANG Y P, WANG Y L, et al. Novel ammonia-driven chemically recuperated gas turbine cycle based on dual fuel mode[J]. Applied Energy, 2023, 343: 121184. DOI: 10.1016/j.apenergy.2023.121184.
|
[12] |
ROSEN M A. Energy- and exergy-based comparison of coal-fired and nuclear steam power plants[J]. Exergy, An International Journal, 2001, 1(3): 180-192. DOI: 10.1016/s1164-0235(01)00024-3.
|
[13] |
LV W, CHEN C N, ZHAO H R, et al. Performance analysis of a CO2 near-zero emission integrated system for stepwise recovery of LNG cold energy and GT exhaust heat[J]. Applied Thermal Engineering, 2024, 236: 121736. DOI: 10.1016/j.applthermaleng.2023.121736.
|
[14] |
MORRIS D R, STEWARD F R. Exergy analysis of a chemical metallurgical process[J]. Metallurgical Transactions B, 1984, 15(4): 645-654. DOI: 10.1007/BF02657285.
|
[15] |
QUEROL E, GONZALEZ-REGUERAL B, RAMOS A, et al. Novel application for exergy and thermoeconomic analysis of processes simulated with Aspen Plus[J]. Energy, 2011, 36(2): 964-974. DOI: 10.1016/j.energy.2010.12.013.
|