|
[1] KOVALENKO M V,
PROTESESCU L, BODNARCHUK M I. Properties and potential optoelectronic
applications of lead halide perovskite nanocrystals[J]. Science, 2017,
358(6364): 745-750. DOI:10.1126/science.aam7093.
[2] LU P, LU M, WANG H, et al. Metal halide
perovskite nanocrystals and their applications in optoelectronic devices[J]. InfoMat, 2019, 1(4):
430-459. DOI:10.1002/inf2.12031.
[3] WANG S, LI H Y, QI L
H, et al. Lead-free halide
double-perovskite nanocrystals: Structure, synthesis, optoelectronic
properties, and applications[J]. Journal of Materials Chemistry C, 2025,
13(37): 19080-19105. DOI:10.1039/d5tc02430g.
[4] MANSER J S, CHRISTIANS J A, KAMAT P V.
Intriguing optoelectronic properties of metal halide perovskites[J]. Chemical
Reviews, 2016, 116(21): 12956-13008. DOI:10.1021/acs.chemrev.6b00136.
[5] ZHANG F, ZHOU Y C, CHEN Z P, et al.
Large-area X-ray scintillator screen based on cesium hafnium chloride
microcrystals films with high sensitivity and stability[J]. Laser &
Photonics Reviews, 2023, 17(5): 2200848. DOI:10.1002/lpor.202200848.
[6] KE W J, KANATZIDIS M
G. Prospects for low-toxicity lead-free perovskite solar cells[J]. Nature
Communications, 2019, 10(1): 965. DOI:10.1038/s41467-019-08918-3.
[7] ZHANG Y Q, MA Y, WANG Y X, et al.
Lead-free perovskite photodetectors: Progress, challenges, and
opportunities[J]. Advanced Materials, 2021, 33(26): 2006691.
DOI:10.1002/adma.202006691.
[8] AFTABUZZAMAN M,
BHOYAR T, et al. Near-unity PLQY in lead-free halide perovskites and
perovskite-inspired halides for light-emitting diode applications[J]. ACS
Energy Letters, 2025, 10(9): 4439-4469. DOI:10.1021/acsenergylett.5c01650.
[9] LI Y Y, ZHOU Z C,
TEWARI N, et al. Progress in
copper metal halides for optoelectronic applications[J]. Materials Chemistry
Frontiers, 2021, 5(13): 4796-4820. DOI:10.1039/D1QM00288K.
[10] ZHANG B Y, WU X, ZHOU S X, et al.
Self-trapped exciton emission in inorganic copper(I) metal halides[J].
Frontiers of Optoelectronics, 2021, 14(4): 459-472.
DOI:10.1007/s12200-021-1133-4.
[11] LIN J Z, GUO D, ZHAI
T R. Lead-free metal halide scintillator materials for imaging applications[J].
Science China Information Sciences, 2024, 67(8): 181401.
DOI:10.1007/s11432-024-4057-0.
[12] CHEN J, LI J Y, YIN T, et al. Rb-doped
Cs3Cu2I5perovskite nanocrystals as
paper-based scintillator film for high-resolution X-Rayimaging[J]. Advanced Functional Materials, 2025,
35(39): 2506331. DOI:10.1002/adfm.202506331.
[13] ZHONG X T, GUO J L, CHEN J K, et al.
Flexible, fast decay and stable X-ray imaging through the pixelated
CsCu2I3/PDMS scintillation array[J]. Journal of Alloys and Compounds, 2025,
1016: 178916. DOI:10.1016/j.jallcom.2025.178916.
[14] LI Y Y, VASHISHTHA P, ZHOU Z C, et al.
Room temperature synthesis of stable, printable Cs3Cu2X5(X = I, Br/I, Br, Br/Cl, Cl) colloidal nanocrystals with near-unity quantum
yield green emitters (X = Cl)[J]. Chemistry of Materials, 2020, 32(13):
5515-5524. DOI:10.1021/acs.chemmater.0c00280.
[15] DING X, ZHOU W J, ZHU H T, et al.
Highly efficient STEs NIR-II broadband emission in a perovskite system and its
spectroscopy applications[J]. Laser & Photonics Reviews, 2024, 18(2):
2300934. DOI:10.1002/lpor.202300934.
[16] TAN J B, LI D L, ZHU
J Q, et al. Self-trapped excitons in soft semiconductors[J]. Nanoscale, 2022,
14(44): 16394-16414. DOI:10.1039/d2nr03935d.
[17] XIONG L, SUN H Y, LI S X, et al.
First-principles investigation on the stability, electronic structure, and
exciton self-trapping mechanism of 0D and 1D Cs3Cu2Cl5[J].
The Journal of Physical Chemistry C, 2023, 127(19): 9113-9120.
DOI:10.1021/acs.jpcc.3c01100.
[18] LIAN L Y, ZHENG M Y,
ZHANG P, et al. Photophysics
in Cs3Cu2X5(X = Cl, Br, or I): Highly
luminescent self-trapped excitons from local structure symmetrization[J].
Chemistry of Materials, 2020, 32(8): 3462-3468.
DOI:10.1021/acs.chemmater.9b05321.
[19] LIU Y, ZHANG Y, WANG Z H, et al.
Fingerprint visualization and anti-counterfeiting applications using lead-free
Cs3Cu2Cl5perovskiteviaa facile green synthesis[J]. Journal of Alloys and Compounds,
2025, 1014: 178816. DOI:10.1016/j.jallcom.2025.178816.
[20] GUO Q X, ZHAO X, SONG B X, et al.
Light emission of self-trapped excitons in inorganic metal halides for
optoelectronic applications[J]. Advanced Materials, 2022, 34(52): 2201008.
DOI:10.1002/adma.202201008.
[21] LI M Z, XIA Z G. Recent progress of
zero-dimensional luminescent metal halides[J]. Chemical Society Reviews, 2021,
50(4): 2626-2662. DOI:10.1039/D0CS00779J.
[22] HAN Y, CHENG X H,
CUI B B. Factors influencing self-trapped exciton emission of low-dimensional
metal halides[J]. Materials Advances, 2023, 4(2): 355-373.
DOI:10.1039/D2MA00676F.
[23] LU Y T, FANG S F, LI G S, et al.
Optimal colloidal synthesis and quality judgment of low-dimensional Cs3Cu2Cl5nanocrystals with efficient green emission[J]. Journal of Alloys and Compounds,
2022, 903: 163924. DOI:10.1016/j.jallcom.2022.163924.
[24] JIANG J T, NIU G M, SUI L Z, et al.
Six-photon excited self-trapped excitons photoluminescence in lead-free halide
perovskite[J]. Advanced Optical Materials, 2023, 11(5): 2202634.
DOI:10.1002/adom.202202634.
[25] CHILAKAMARTHI U,
GIRIBABU L. Photodynamic therapy: Past, present and future[J]. Chemical Record,
2017, 17(8): 775-802. DOI:10.1002/tcr.201600121. |