|
[1]
LU F, HU H F, SUN W J, et al. Effects of national ecological restoration
projects on carbon sequestration in China from 2001 to 2010[J]. Proceedings of
the National Academy of Sciences of the United States of America, 2018,
115(16): 4039-4044. DOI: 10.1073/pnas.1700294115.
[2]
ANINDITA S, SLEUTEL S, VANDENBERGHE D, et al. Land use impacts on weathering,
soil properties, and carbon storage in wet Andosols, Indonesia[J]. Geoderma,
2022, 423: 115963. DOI: 10.1016/j.geoderma.2022.115963.
[3] BABBAR D, AREENDRAN G, SAHANA M, et al. Assessment and
prediction of carbon sequestration using Markov chain and InVEST model in
Sariska Tiger Reserve, India[J]. Journal of Cleaner Production, 2021, 278:
123333. DOI: 10.1016/j.jclepro.2020.123333.
[4] PIYATHILAKE I D U H, UDAYAKUMARA E P N, RANAWEERA L V, et al.
Modeling predictive assessment of carbon storage using InVEST model inUva province, SriLanka[J]. Modeling Earth Systems and Environment, 2022, 8(2):
2213-2223. DOI: 10.1007/s40808-021-01207-3.
[5] 郑吉林,蔡艳龙,郭晓宇,等.基于InVEST模型的晋北土地利用变化与碳储量研究[J].地质通报, 2024, 43(1):173-180.
DOI:10.12097/gbc.2022.05.038.
[6] 王洪彦, 郑文璐, 盖兆雪. 基于InVEST模型的黑土区碳储量时空分异特征[J]. 环境科学学报, 2024, 44(7): 473-481.
DOI: 10.13671/j.hjkxxb.2024.0098.
[7] 卢雅焱, 徐晓亮, 李基才, 等. 基于InVEST模型的新疆天山碳储量时空演变研究[J]. 干旱区研究, 2022, 39(6): 1896-1906.
DOI: 10.13866/j.azr.2022.06.20.
[8] 胡珂, 韩念龙, 于淼, 等. 基于遥感生态指数的三亚市土地利用变化模拟[J]. 中国水土保持科学(中英文), 2023, 21(1): 101-109.
DOI: 10.16843/j.sswc.2023.01.012.
[9] YU X R, XIAO J T, HUANG K, et al. Simulation of land use
based on multiple models in the western Sichuan Plateau[J]. Remote Sensing,
2023, 15(14): 3629. DOI: 10.3390/rs15143629.
[10]
NABOUREH A, REZAEI MOGHADDAM M H, FEIZIZADEH B, et al. An integrated
object-based image analysis and CA-Markov model approach for modeling land
use/land cover trends in the Sarab plain[J]. Arabian Journal of Geosciences,
2017, 10(12): 259. DOI: 10.1007/s12517-017-3012-2.
[11] MATLHODI B, KENABATHO P K, PARIDA B P, et al. Analysis
of the future land use land cover changes in the Gaborone Dam Catchment using
CA-Markov model: Implications on water resources[J]. Remote Sensing, 2021,
13(13): 2427. DOI: 10.3390/rs13132427.
[12] 余洲, 李明玉, 钱雨扬, 等. 基于CA_Markov模型多情景模拟的三峡库区土地利用变化及其生态环境效应[J]. 水土保持研究, 2024, 31(3): 363-372.
DOI: 10.13869/j.cnki.rswc.2024.03.023.
[13] 吕霜霜. 三峡库区土地利用变化及生态服务价值研究[D]. 重庆: 西南大学, 2019.
[14] 胡碧松,张涵玥.基于CA-Markov模型的鄱阳湖区土地利用变化模拟研究[J].长江流域资源与环境, 2018, 27(6):1207-1219. DOI:10.11870/cjlyzyyhj201806004.
[15] SONG Y Z, WANG J F, GE Y, et al. An optimal parameters-based
geographical detector model enhances geographic characteristics of explanatory
variables for spatial heterogeneity analysis: Cases with different types of
spatial data[J]. GIScience & Remote Sensing, 2020, 57(5): 593-610. DOI:
10.1080/15481603.2020.1760434.
[16] 刘敏超,李迪强,温琰茂,等.三江源地区土壤保持功能空间分析及其价值评估[J].中国环境科学, 2005, 25(5):627-631.
DOI:10.3321/j.issn:1000-6923.2005.05.028.
[17] SANG L L, ZHANG C, YANG J Y, et al. Simulation of land
use spatial pattern of towns and villages based on CA–Markov model[J].
Mathematical and Computer Modelling, 2011, 54(3/4): 938-943. DOI:
10.1016/j.mcm.2010.11.019.
[18]
WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of
two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology,
2012, 7(11): 699-712. DOI: 10.1038/nnano.2012.193.
[19] 李克让,王绍强,曹明奎.中国植被和土壤碳贮量[J].中国科学(D辑), 2003(1):72-80. DOI:10.3969/j.issn.1674-7240.2003.01.008.
[20] 方精云, 刘国华, 徐嵩龄. 我国森林植被的生物量和净生产量[J]. 生态学报, 1996, 16(5): 497-508.
[21] 黄玫,季劲钧,曹明奎,等.中国区域植被地上与地下生物量模拟[J].生态学报, 2006, 26(12):4156-4163. DOI:10.3321/j.issn:1000-0933.2006.12.031.
[22] 朴世龙,方精云,贺金生,等.中国草地植被生物量及其空间分布格局[J].植物生态学报, 2004, 28(4):491-498. DOI:10.3321/j.issn:1004-5759.2001.02.015.
[23] 揣小伟,黄贤金,郑泽庆,等.江苏省土地利用变化对陆地生态系统碳储量的影响[J].资源科学, 2011, 33(10):1932-1939. DOI:10.1007/s11442-011-0845-6.
[24] 陈光水, 杨玉盛, 谢锦升, 等. 中国森林的地下碳分配[J]. 生态学报, 2007, 27(12): 5148-5157.
[25]
GIARDINA C P, RYAN M G. Evidence that decomposition rates of organic carbon in
mineral soil do not vary with temperature[J]. Nature, 2000, 404(6780): 858-861.
DOI: 10.1038/35009076.
[26] ALAM S A, STARR M, CLARK B J F. Tree biomass and soil organic carbon
densities across the Sudanese woodland savannah: A regional carbon
sequestration study[J]. Journal of Arid Environments, 2013, 89: 67-76. DOI:
10.1016/j.jaridenv.2012.10.002.
[27] 邵壮, 陈然, 赵晶, 等. 基于FLUS与InVEST模型的北京市生态系统碳储量时空演变与预测[J]. 生态学报, 2022, 42(23): 9456-9469.
[28] CONGALTON R G. Accuracy assessment and validation of
remotely sensed and other spatial information[J]. International Journal of
Wildland Fire, 2001, 10(4): 321. DOI: 10.1071/wf01031.
[29] COHEN J. A coefficient of agreement for nominal scales[J].
Educational and Psychological Measurement, 1960, 20(1): 37-46. DOI:
10.1177/001316446002000104.
[30] CHANG X Q, XING Y Q, WANG J Q,
et al. Effects of land use and cover change (LUCC) on terrestrial carbon stocks
in China between 2000 and 2018[J]. Resources, Conservation and Recycling, 2022,
182: 106333. DOI: 10.1016/j.resconrec.2022.106333.
[31] LIU W, LIU D F, LIU Y. Spatially
heterogeneous response of carbon storage to land use changes in Pearl River
Delta urban agglomeration, China[J]. Chinese Geographical Science, 2023, 33(2):
271-286. DOI: 10.1007/s11769-023-1343-3.
[32] ROY S, MAJUMDER S, BOSE A, et
al. Does geographical heterogeneity influence urban quality of life? a case of
a densely populated Indian City[J]. Papers in Applied Geography, 2023, 9(4):
395-424. DOI: 10.1080/23754931.2023.2225541.
[33] 李曼, 吴东丽, 何昊, 等. 1990—2020年黄河流域碳储量时空演变及驱动因素研究[J]. 生态环境学报, 2025, 34(3): 333-344.
DOI: 10.16258/j.cnki.1674-5906.2025.03.001.
[34] 王成武, 罗俊杰, 唐鸿湖. 基于InVEST模型的太行山沿线地区生态系统碳储量时空分异驱动力分析[J]. 生态环境学报, 2023, 32(2): 215-225.
DOI: 10.16258/j.cnki.1674-5906.2023.02.001.
[35] YANG X T, BAI X, YAO W Q, et al.
Spatioemporal dynamics and driving forces of soil organic carbon changes in an
arid coal mining area of China investigated based on remote sensing
techniques[J]. Ecological Indicators, 2024, 158: 111453. DOI: 10.1016/j.ecolind.2023.111453.
[36] 万路通, 刘小丹, 郭汉清, 等. 基于InVEST-PLUS模型的首都西部生态涵养区碳储量时空演替及预测[J/OL]. 地质通报, 2025: 1-16.
(2025-03-21).
https://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZQYD2025031900F&dbname=CJFD&dbcode=CJFQ.
[37] 张爽, 高启晨, 张戎, 等. 基于PLUS-InVEST模型碳储量时空演变及驱动因素分析——以纳帕海流域为例[J]. 中国环境科学, 2024, 44(9): 5192-5201.
DOI: 10.19674/j.cnki.issn1000-6923.2024.0168.
[38] XI H J, LI T H. Unveiling the
spatiotemporal dynamics and influencing factors of carbon stocks in the Yangtze
River basin over the past two decades[J]. Science of The Total Environment,
2024, 954: 176261. DOI: 10.1016/j.scitotenv.2024.176261.
[39] 李文婕, 黄草, 夏丹, 等. 2003—2022年洞庭湖区碳储量变化趋势及驱动因素分析[J/OL]. 水利水电技术(中英文), 2025: 1-26.
(2025-03-06).
https://kns.cnki.net/KCMS/detail/detail.aspx?filename=SJWJ20250304003&dbname=CJFD&dbcode=CJFQ.
[40] ZHONG R, PU L J, XIE J Y, et al.
Carbon storage in typical ecosystems of coastal wetlands in Jiangsu, China:
Spatiotemporal patterns and mechanisms[J]. Catena, 2025, 254: 108882. DOI:
10.1016/j.catena.2025.108882.
[41] SUN B Y, WANG H J, WU X, et al.
Dual impacts of human activities on land cover and carbon storage in the Yellow
River Delta (1986–2023)[J]. Ocean & Coastal Management, 2025, 267: 107655.
DOI: 10.1016/j.ocecoaman.2025.107655.
[42] 韩玉, 丁素婷, 杨太保. 山西南部中条山生态系统碳储量时空分布及驱动因素[J]. 中国环境科学, 2023, 43(3): 1298-1306. DOI:
10.19674/j.cnki.issn1000-6923.20220915.015. |