[1] |
李海东. 高速公路经济论[D]. 成都: 四川大学, 2004.
|
[2] |
石京. 一般收费道路通行费收入实用预测方法研究[J]. 公路工程, 2007, 32(4): 103-106. DOI: 10.3969/j.issn.1674-0610.2007.04.026.
|
[3] |
刘闯. 高速公路运营收入预测模型与方法[J]. 中外公路, 2005, 25(3): 125-127. DOI: 10.3969/j.issn.1671-2579.2005.03.038.
|
[4] |
蒋强, 唐敏. 基于收费政策的高速公路通行费预测方法研究[J]. 公路工程, 2019, 44(5): 263-268. DOI: 10.19782/j.cnki.1674-0610.2019.05.050.
|
[5] |
何九冉, 四兵锋. ARIMA-RBF模型在城市轨道交通客流预测中的应用[J]. 山东科学, 2013, 26(3): 75-81. DOI: 10.3976/j.issn.1002-4026.2013.03.015.
|
[6] |
饶建辉, 王登才. Holt-Winters时间序列模型在江阴大桥车流量预测中的应用[J]. 中国交通信息化, 2018(增刊): 39-41.
|
[7] |
郑宣传, 韩宝明, 李得伟. 基于RBF神经网络的城市快速路短时交通流预测研究[J]. 山东科学, 2012, 25(3): 23-28.
|
[8] |
BAI S J, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. [2024-03-20]. http://arxiv.org/abs/1803.01271.
|
[9] |
王鑫, 吴际, 刘超, 等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44(4): 772-784. DOI: 10.13700/j.bh.1001-5965.2017.0285.
|
[10] |
CHEN P, ZHANG Y Y, CHENG Y Y, et al. Pathformer: multi-scale transformers with adaptive pathways for time series forecasting[EB/OL]. [2024-03-20]. http://arxiv.org/abs/2402.05956.
|
[11] |
SHABANI A, ABDI A, MENG L L, et al. Scaleformer: iterative multi-scale refining transformers for time series forecasting[EB/OL]. [2024-03-20]. http://arxiv.org/abs/2206.04038.
|
[12] |
CAO H Z, HUANG Z H, YAO T C, et al. InParformer: evolutionary decomposition transformers with interactive parallel attention for long-term time series forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(6): 6906-6915. DOI: 10.1609/aaai.v37i6.25845.
|
[13] |
ZHOU T, MA Z Q, WEN Q S, et al. FEDformer: frequency enhanced decomposed transformer for long-term series forecasting[C]// Proceedings of the 39th International Conference on Machine Learning, 2022,162: 27268-27286.
|
[14] |
ZHOU H Y, ZHANG S H, PENG J, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[C]. Proceedings of the AAAI conference on artificial intelligence. 2021, 35(12): 11106-11115.
|
[15] |
LIU Y, HU T G, ZHANG H R, et al. iTransformer: inverted transformers are effective for time series forecasting[EB/OL]. [2024-03-20]. http://arxiv.org/abs/2310.06625.
|