[1] |
刘亚宁, 李桂安. 基于乘坐舒适性的城市轨道交通机场线列车立席和座席设置研究[J]. 铁道技术监督, 2023, 51(8): 5-9. DOI: 10.3969/j.issn.1006-9178.2023.08.003.
|
[2] |
鲁放, 周旭, 乔颖丽, 等. 2020年中国轨道交通机场线统计及空轨协同运营分析[J]. 都市快轨交通, 2020, 33(6): 1-6. DOI: 10.3969/j.issn.1672-6073.2020.06.001.
|
[3] |
孙继营, 杨晓飞, 刘晓庆, 等. 北京地铁大兴机场线客流特征分析与行车组织方案研究[J]. 城市轨道交通研究, 2023, 26(3): 119-124. DOI: 10.16037/j.1007-869x.2023.03.022.
|
[4] |
曹秉新, 刘卓, 陈艳艳, 等. 基于时空大数据的轨交站域用地功能紧凑度分析[J]. 地理信息世界, 2021, 28(4): 9-15. DOI: 10.3969/j.issn.1672-1586.2021.04.002.
|
[5] |
王静, 张源, 廖唱, 等. 城市轨道交通机场线客流特征分析及建议[J]. 综合运输, 2021, 43(6): 22-27.
|
[6] |
LIN L, LIU X, LIU X, et al. A prediction model to forecast passenger flow based on flight arrangement in airport terminals[J]. Energy and Built Environment, 2023, 4(6): 680-688. DOI: 10.1016/j.enbenv.2022.06.006.
|
[7] |
陆柠馨. 基于顾客感知服务质量的XP航空公司顾客满意度研究[D]. 昆明: 云南财经大学, 2022.
|
[8] |
SUN Y S, SHI J G, SCHONFELD P M. Identifying passenger flow characteristics and evaluating travel time reliability by visualizing AFC data: a case study of Shanghai Metro[J]. Public Transport, 2016, 8(3): 341-363. DOI: 10.1007/s12469-016-0137-8.
|
[9] |
DING C, CAO X Y, LIU C. How does the station-area built environment influence Metrorail ridership? Using gradient boosting decision trees to identify non-linear thresholds[J]. Journal of Transport Geography, 2019, 77:70-78. DOI: 10.1016/j.jtrangeo.2019.04.011.
|
[10] |
郭文. 基于支持向量机的轨道交通短期客流预测方法研究[D]. 苏州: 苏州大学, 2019.
|
[11] |
LIN S F, TIAN H Y. Short-term metro passenger flow prediction based on random forest and LSTM[C]//2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). Chongqing, China: IEEE, 2020: 2520-2526. DOI: 10.1109/ITNEC48623.2020.9084974.
|
[12] |
方昇越. 基于XGBoost的地铁短时客流量预测研究[D]. 大连: 大连海事大学, 2022.
|
[13] |
de CAIGNY A, COUSSEMENT K, de BOCK K W. A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees[J]. European Journal of Operational Research, 2018, 269(2): 760-772. DOI: 10.1016/j.ejor.2018.02.009.
|
[14] |
XU T P, MA Y, KIM K. Telecom churn prediction system based on ensemble learning using feature grouping[J]. Applied Sciences, 2021, 11(11): 4742. DOI: 10.3390/app11114742.
|
[15] |
苗辰, 王万江. 基于出站旅客出行目的的地铁站口分析及优化:以乌鲁木齐地铁1号线国际机场站为例[J]. 城市建筑, 2020, 17(22): 143-147. DOI: 10.3969/j.issn.1673-0232.2020.22.032.
|
[16] |
杜文博, 石婉君, 廖盛时, 等. 基于“时间-特征”协同注意力的机场快轨客流预测[J]. 北京航空航天大学学报, 2022, 48(9): 1605-1612. DOI: 10.13700/j.bh.1001-5965.2022.0321.
|
[17] |
WOLPERT D H. Stacked generalization[J]. Neural Networks, 1992, 5(2): 241-259. DOI: 10.1016/S0893-6080(05)80023-1.
|
[18] |
DING C A, WANG D G, MA X L, et al. Predicting short-term subway ridership and prioritizing its influential factors using gradient boosting decision trees[J]. Sustainability, 2016, 8(11): 1100. DOI: 10.3390/su8111100.
|
[19] |
WANG K P, WANG P, HUANG Z R, et al. A two-step model for predicting travel demand in expanding subways[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 19534-19543. DOI: 10.1109/TITS.2022.3166669.
|
[20] |
朱月凡, 蒋国平, 高辉, 等. 基于特征选择和数据增强的电池荷电状态预测[J]. 计算机系统应用, 2023, 32(2): 45-54. DOI: 10.15888/j.cnki.csa.008943.
|