点扩散函数,">快速傅里叶变换,">算法盲恢复,">分裂,Bregman 点扩散函数,">快速傅里叶变换,">算法盲恢复,">分裂,Bregman blind deconvolution,split Bregman algorithm,"/> <span style="font-size: 10.5pt;">改进正则项的图像盲恢复方法</span>

山东科学 ›› 2016, Vol. 29 ›› Issue (3): 115-120.doi: 10.3976/j.issn.1002-4026.2016.03.020

• 其他研究论文 • 上一篇    

改进正则项的图像盲恢复方法

贾彤彤,张晓乐,石玉英   

  1. 华北电力大学数理学院,北京102206
  • 收稿日期:2015-12-24 出版日期:2016-06-20 发布日期:2016-06-20
  • 作者简介:贾彤彤(1990),女,硕士研究生,研究方向为图像处理?Email:jttncepu@163.com
  • 基金资助:

    国家自然科学基金(11271126);中央高校基本科研业务费专项资金资助(2014ZZD10)

Image blind deconvolution approach with modified regularization term

JIA Tong-tong, ZHANG Xiao-le, SHI Yu-ying   

  1. Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, China
  • Received:2015-12-24 Online:2016-06-20 Published:2016-06-20

摘要:

图像恢复是一个反卷积过程,这一过程通常是病态的,其中的盲恢复是一个最常见也最具挑战性的问题?由于盲恢复过程中缺乏点扩散函数的相关先验信息,使得这个过程变得更为复杂?为了保证在得到光滑图像的同时也可以很好地保持图像的边缘信息,本文提出了一个改进的全变分正则项的盲恢复模型,并结合分裂Bregman算法对模型进行了求解?数值计算中采用了快速傅里叶变换和shrinkage公式来降低计算复杂度?数值实验分别对模糊图?含有噪声和高斯模糊的灰度图进行了处理,得到了满意的结果?

关键词: 点扩散函数">点扩散函数')">">, 快速傅里叶变换')">">快速傅里叶变换, 算法">算法盲恢复">盲恢复')">">, 分裂">分裂')">">, Bregman">BregmanImage restoration is a deconvolution process, which is usually morbid. Blind deconvolution is one of the most common and challenging problems. Without priori knowledge on point spread function, the process is therefore more complex. To preserve the edge information of an image as well as its smoothness, we present a blind deconvolution model with a modified total variation regularization term. We also solve the model with split Bregman iteration algorithm. Fast Fourier transform and shrinkage formula are applied in numerical calculation to reduce its computational complexity. We apply the model to the processing for a blurry image and a greyscale image with noise and Gaussian blur in numerical experiment, and then obtain satisfactory results.

Key words: point spread function, fast Fourier transform, blind deconvolution')">blind deconvolution, split Bregman algorithm

中图分类号: 

  • 引用本文

    贾彤彤,张晓乐,石玉英. 改进正则项的图像盲恢复方法[J]. 山东科学, 2016, 29(3): 115-120.

    JIA Tong-tong, ZHANG Xiao-le, SHI Yu-ying. Image blind deconvolution approach with modified regularization term[J]. SHANDONG SCIENCE, 2016, 29(3): 115-120.

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0