摘要:
设G=(V,E)是有限简单无向图,U是G的一个边割,k是一正整数.若G-U的每个分支的阶至少为k,则称U为G的一个k阶限制边割.定义G的k阶限制边连通度λk(G)为G的k阶限制边割中最少的边数,达到最小的称为λk割.定义ξk(G) =min{(F):F是G的k阶连通子图},其中(F)表示恰好有一个端点在F上的边的数目.如果λk(G) =ξk(G),则称G是λk最优图.本文给出了二部图λ3最优性的一个原子条件.
中图分类号:
O157.5
开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0