摘要:
给定一个连通图G=(V,E)及其一棵支撑树T,图G的一个L(d,1)T标号即函数g:V(G)→{0,1,2,…},满足:(1)如果xy∈E(G),则|g(x)-g(y)|≥1;(2)如果dG(x,y)=2,则|g(x)-g(y)|≥1;(3)如果xy∈E(T),则|g(x)-g(y)|≥d.假设图G有一个L(d,1)-T标号函数g:g(V){0,1,2,…,k},则图G的所有L(d,1)-T标号函数中最小的整数k记为L(d,1)-T标号数λTd(G,T).本文证明了若G是无K1,t(3≤t≤n)的连通图,其最大度为Δ,|G|=n,T为G的任意支撑树,则λTd(G,T)≤((t-2)/(t-1)) Δ2+Δ+2d-2.
中图分类号:
O157.5
开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0