[1] |
胡月, 马守骏, 蹇锡高, 等. 新型聚芳醚腈固化邻苯二甲腈树脂的研究[J]. 化工学报, 2023, 74(2): 871-882. DOI: 10.11949/0438-1157.20221229.
|
[2] |
董俊宇, 赵星诺, 章宇琳, 等. 3, 3', 4, 4'-联苯四胺改性邻苯二甲腈树脂及其复合材料性能[J]. 高分子材料科学与工程, 2024, 40(2): 65-73.
|
[3] |
许建军. 自催化型聚苯腈树脂的制备与性能研究[D]. 天津: 河北工业大学, 2020.
|
[4] |
蒋淑媛. 腈基聚合物的固化行为及功能化应用[D]. 广州: 华南理工大学, 2021.
|
[5] |
贾坤, 徐明珍, 潘海, 等. 耐高温腈基聚合物及复合材料研究进展[J]. 中国材料进展, 2015, 34(12): 897-905. DOI: 10.7502/j.issn.1674-3962.2015.12.05.
|
[6] |
王婷. 自催化和席夫碱型邻苯二甲腈单体的合成及其与苯并噁嗪共聚行为与性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.
|
[7] |
翁志焕, 宗立率, 刘程, 等. 邻苯二甲腈树脂分子结构及性能调控工作进展[J]. 高分子材料科学与工程, 2021, 37(1): 189-199. DOI: 10.16865/j.cnki.1000-7555.2021.0016.
|
[8] |
景磊, 严舜, 王小忠, 等. POSS改性邻苯二甲腈玻璃化转变温度的模拟与预测[J]. 纤维复合材料, 2021, 38(1): 14-18. DOI: 10.3969/j.issn.1003-6423.2021.01.003.
|
[9] |
WANG L L, LIU X C, LIU C Y, et al. Ultralow dielectric constant polyarylene ether nitrile foam with excellent mechanical properties[J]. Chemical Engineering Journal, 2020, 384: 123231. DOI: 10.1016/j.cej.2019.123231.
|
[10] |
ZHAO F H, LIU R J, YU X Y, et al. Synthesis of a novel naphthyl-based self-catalyzed phthalonitrile polymer[J]. Chinese Chemical Letters, 2015, 26(6): 727-729. DOI: 10.1016/j.cclet.2015.03.025.
|
[11] |
BAI S N, SUN X Y, CHEN X G, et al. Synthesis and properties of a thioether bonded phthalonitrile resin[J]. Materials Today Communications, 2020, 24: 101352. DOI: 10.1016/j.mtcomm.2020.101352.
|
[12] |
HU J H, PU Y, ZHOU R T, et al. Self-curing phthalonitrile resin with disulfide bond as the curing group[J]. ACS Applied Polymer Materials, 2023, 5(11): 9027-9036. DOI: 10.1021/acsapm.3c01485.
|
[13] |
KELLER T M, GRIFFITH J R. The synthesis of highly fluorinated phthalonitrile resins and cure studies[J]. Journal of Fluorine Chemistry, 1979, 13(4): 315-324. DOI: 10.1016/s0022-1139(00)82081-3.
|
[14] |
LI Z, GUO Y, WANG G X, et al. Preparation and characterization of a self-catalyzed fluorinated novolac-phthalonitrile resin[J]. Polymers for Advanced Technologies, 2018, 29(12): 2936-2942. DOI: 10.1002/pat.4413.
|
[15] |
PU Y, XIE H X, HE X, et al. The curing reaction of phthalonitrile promoted by sulfhydryl groups with high curing activity[J]. Polymer, 2022, 252: 124948. DOI: 10.1016/j.polymer.2022.124948.
|
[16] |
HU J H, SUN R, WU Y H, et al. Novel benzimidazole-mediated phthalonitrile/epoxy binary blends system with synergistic curing behavior and outstanding thermal properties[J]. RSC Advances, 2017, 7(69): 43978-43986. DOI: 10.1039/C7RA06162E.
|
[17] |
BURCHILL P J. On the formation and properties of a high-temperature resin from a bisphthalonitrile[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1994, 32(1): 1-8. DOI: 10.1002/pola.1994.080320101.
|
[18] |
YANG X L, LIU X B. Study on curing reaction of 4-aminophenoxyphthalonitrile/bisphthalonitrile[J]. Chinese Chemical Letters, 2010, 21(6): 743-747. DOI: 10.1016/j.cclet.2009.12.022.
|
[19] |
KONG W J, SUN J Q, GAO M Y, et al. High-performance boron-containing phthalonitrile resins[J]. Polymer Chemistry, 2023, 14(19): 2317-2325. DOI: 10.1039/D3PY00070B.
|
[20] |
CHEN Z W, WANG L Q, LIN J P, et al. A theoretical insight into the curing mechanism of phthalonitrile resins promoted by aromatic amines[J]. Physical Chemistry Chemical Physics, 2021, 23(32): 17300-17309. DOI: 10.1039/d1cp01947c.
pmid: 34341806
|
[21] |
WU M J, XU J J, BAI S N, et al. A high-performance functional phthalonitrile resin with a low melting point and a low dielectric constant[J]. Soft Matter, 2020, 16(7): 1888-1896. DOI: 10.1039/C9SM02328C.
pmid: 31994579
|
[22] |
GU H B, GAO C, DU A, et al. An overview of high-performance phthalonitrile resins: fabrication and electronic applications[J]. Journal of Materials Chemistry C, 2022, 10(8): 2925-2937. DOI: 10.1039/D1TC05715D.
|
[23] |
QI Y, WENG Z H, SONG C, et al. Deep eutectic solvent for curing of phthalonitrile resin: lower the curing temperature but improve the properties of thermosetting[J]. High Performance Polymers, 2021, 33(5): 538-545. DOI: 10.1177/0954008320972151.
|
[24] |
管俊, 白小陶, 李泽宇. 苯并噁嗪型邻苯二甲腈的制备及性能[J]. 高分子材料科学与工程, 2023, 39(1): 43-49. DOI: 10.16865/j.cnki.1000-7555.2023.0016.
|
[25] |
WU M J, HAN W S, ZHANG C, et al. Rational design of fluorinated phthalonitrile/hollow glass microsphere composite with low dielectric constant and excellent heat resistance for microelectronic packaging[J]. Nanomaterials, 2022, 12(22): 3973. DOI: 10.3390/nano12223973.
|
[26] |
GUAN Y, WANG D M, SONG G L, et al. Novel soluble polyimides derived from 2, 2’-bis[4-(5-amino-2-pyridinoxy)phenyl]hexafluoropropane: preparation, characterization, and optical, dielectric properties[J]. Polymer, 2014, 55(16): 3634-3641. DOI: 10.1016/j.polymer.2014.06.078.
|
[27] |
KOBZAR Y L, TKACHENKO I M, BLIZNYUK V N, et al. Fluorinated polybenzoxazines as advanced phenolic resins for leading-edge applications[J]. Reactive and Functional Polymers, 2018, 133: 71-92. DOI: 10.1016/j.reactfunctpolym.2018.10.004.
|
[28] |
LEE C W, KIM O Y, LEE J Y. Organic materials for organic electronic devices[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1198-1208. DOI: 10.1016/j.jiec.2013.09.036.
|
[29] |
PHUA E J R, LIU M, CHO B, et al. Novel high temperature polymeric encapsulation material for extreme environment electronics packaging[J]. Materials & Design, 2018, 141: 202-209. DOI: 10.1016/j.matdes.2017.12.029.
|
[30] |
GAO C, YANG M, XIE W H, et al. Adjustable magnetoresistance in semiconducting carbonized phthalonitrile resin[J]. Chemical Communications, 2021, 57(77): 9894-9897. DOI: 10.1039/d1cc04300e.
pmid: 34494043
|
[31] |
ZENG J L, XIE W H, ZHOU H, et al. Nitrogen-doped graphite-like carbon derived from phthalonitrile resin with controllable negative magnetoresistance and negative permittivity[J]. Advanced Composites and Hybrid Materials, 2023, 6(2): 64. DOI: 10.1007/s42114-023-00639-y.
|
[32] |
ALENEZI G T, RAJENDRAN N, ABDEL NAZEER A, et al. Development of uniform porous carbons from polycarbazole phthalonitriles as durable CO2 adsorbent and supercapacitor electrodes[J]. Frontiers in Chemistry, 2022, 10: 879815. DOI: 10.3389/fchem.2022.879815.
|
[33] |
KELLER T M, ROLAND C M. High temperature adhesive: US5242755A[P]. 1993-09-07.
|
[34] |
AUGUSTINE D, VIJAYALAKSHMI K P, SADHANA R, et al. Hydroxyl terminated PEEK-toughened epoxy-amino novolac phthalonitrile blends-Synthesis, cure studies and adhesive properties[J]. Polymer, 2014, 55(23): 6006-6016. DOI: 10.1016/j.polymer.2014.09.042.
|
[35] |
李洪峰, 周恒, 王德志, 等. 双邻苯二甲腈树脂胶黏剂的研究[J]. 材料工程, 2014, 42(10): 21-26. DOI: 10.11868/j.issn.1001-4381.2014.10.005.
|
[36] |
张大勇, 刘晓辉, 李欣, 等. 改性邻苯二甲腈酚醛树脂胶黏剂的研究[J]. 化学与粘合, 2014, 36(6): 421-423.
|
[37] |
马琳, 崔宝军, 李刚, 等. 邻苯二甲腈/AG-80环氧树脂体系固化行为的研究[J]. 粘接, 2012, 33(12): 46-49. DOI: 10.3969/j.issn.1001-5922.2012.12.013.
|
[38] |
左芳, 雷亚杰, 钟家春, 等. 含苯并恶嗪单元的双邻苯二甲腈树脂的粘接性能[J]. 热固性树脂, 2011, 26(5): 30-33.
|
[39] |
刘彩召. 粘接材料用邻苯二甲腈树脂合成及改性研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.
|